

[4063] - 352

T.E. (Information Technology) (Semester – I) Examination, 2011 THEORY OF COMPUTATION (2008 Pattern) (New)

Time: 3 Hours

Max. Marks: 100

Instructions:

- 1) Answer Question 1 or 2, 3 or 4 and 5 or 6 from Section I and Question 7 or 8, 9 or 10 and 11 or 12 from Section II.
- 2) Answers to the **two** Sections should be written in **separate** answer books.
- 3) Neat diagrams must be drawn wherever necessary.
- 4) Figures to the right indicate full marks.
- 5) Assume suitable data if necessary.

SECTION - I

- 1. a) Define and explain:
 - i) Language
 - ii) Cartesian Product
 - iii) Regular Expression
 - iv) Kleene Closure.

OR

- 2. a) Construct NFA from the following regular expressions:
 - :\ 0+4+0+
 - i) 0*1*2*
 - ii) $(00 + 1)^* (10)^*$.
 - b) Obtain regular expression for the following FA.

3. a) Convert the following NFA to its equivalent DFA.

8

8

8

P.T.O.

8

b) Design a Moore Machine for checking divisibility by 3 of a given decimal number (residue of 3).

4

c) Consider the following Mealy machine, construct a Moore machine equivalent to

4

8

Convert the following NFA- ϵ to its equivalent DFA.

b) Construct the NFA for the language of all strings that begin and end with same symbol over the alphabet $\Sigma = \{0, 1\}$.

4

c) Design a DFA which accepts the odd number 1's and any number of 0's over $\Sigma = \{0, 1\}.$

5. a) Show that the following grammar is ambiguous

6

 $S \rightarrow aSbS$

 $S \rightarrow bSaS$

 $S \rightarrow \epsilon$.

6

 $G = (\{S\}, \{a, b\}, P, S)$

b) Convert the following grammar to Chomsky Normal Form (CNF)

c) Obtain a grammar to generate the language

 $P = \{S \rightarrow aSa \mid bSb \mid a \mid b \mid aa \mid bb\}$

6

$$L = \{a^{n+2}b^n \mid n \ge 0 \text{ and } m > n\}$$

OR

6. a) Obtain the unambiguous grammar for the following grammar

6

$$E \rightarrow E + E \mid E - E$$

$$E \rightarrow E * E | E / E$$

$$E \rightarrow (E) \mid I$$

$$I \rightarrow a \mid b \mid c$$

b) Consider the following grammar

4

$$S \rightarrow aAS \mid a$$

$$A \rightarrow SbA \mid SS \mid ba$$

Derive the string aabbaa using

- i) Leftmost derivation
- ii) Rightmost derivation.
- c) Convert the following grammar to GNF

8

$$G = (\{A_1, A_2, A_3\}, \{a, b\}, P, A_1)$$

$$P = \{A_1 \rightarrow A_2 A_3$$

$$A_2 \rightarrow A_3 A_1 \mid b$$

$$A_3 \rightarrow A_1 A_2 | a$$

SECTION - II

7. a) Convert the following right linear grammar to left linear grammar

4

$$S \rightarrow 0A$$

$$A \rightarrow 1A$$

$$A \rightarrow \varepsilon$$

b) Obtain a grammar to generate a string consisting of any number of a's and b's with at least one a.

4

c) State and prove Pumping lemma theorem for Context-Free Languages.

8

OR

8. a) Show that CFLs are closed under Union, Concatenation and Kleene closure.

8

b) By using Pumping Lemma, prove that following language

8

$$L = \{ww \mid w \in \{a, b\}^*\}$$
 is not a context-free language.

B/II/11/6,495