
Tota	l No.	o. of Questions : 8] SEAT No.	:	
P33	881		l No. of Pages : 3	
		[5353] 581		
		TE. (Computer Engineering)		
		THEORY OF COMPUTATION		
		(2015 Pattern)		
Time	Time: 2½ Hours] [Ma			
Insti	ructio	ions to the candidates:		
	1)	Attempt questions Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, and Q	.7 or Q8.	
	2)	Neat diagrams must be drawn wherever necessary.		
	3)	Assume suitable data, if necessary.		
		80 Jr.		
Q1)	a)	Construct DFA for language defined by $\Sigma = \{a,b\}$ where	e [6]	
		S = (strings containing only a's)		
		S = (strings containing only b's)		
		S = {strings containing only a's or b's}		
	b)	Explain the application of Regular expressions in Text Sea	rch and Replace	
	c)	Write short notes on	[8]	
	,	i) Chomsky Normal Form	8	
		ii) Greibach Normal Form	Ox.	
		OR	V.	
Q 2)	a) D	Design a FA which checks the divisibility by 3 for a binary n	umber input.[6]	
	b)	With Respect to properties of regular languages explain v lemma and closure properties of regular languages.	what is pumping [6]	
	c)	State significance of normalization process for grammar	. [8]	
		Let G be a CFG with productions		
		S-> AB I ∈		
		A->a		
		B ->b		
		Convert G in CNF.		

P.T.O.

www.sppuonline.com

<i>Q3)</i>	a)	Define Turing machine. Explain recursively enumerable sets.	[4]
	b)	Write short notes on -	[6]
	i)	Non Deterministic TM	
	ii)	Composite TM	
	iii)	Halting problem of TM	
	c)	Obtain a Turing Machine to accept a language	[8]
		$L=\{0^n1^n, n \ge 1\}.$	
		OR	
Q4)	a)	Explain the representation of TM.	[4]
	b)	Construct TM for I's complement of binary number.	[6]
	c)	Design a Turing Machine to accept the language	[8]
		$L = \{w \mid w \in (0+1)^*\}$ containing the substring 001.	
		A. A.	
Q5)	a)	Define PDA. What are different types of PDA?	[4]
	b)	Design a PDA that accepts $\{a^nb^n n \ge 0\}$	[6]
	c)	Construct a PDA that accepts all palindrome strings over	[6]
		$\Sigma = \{a, b\}$. Specify simulation for string 'aba'.	
		OR	
Q6)	a)	Explain the working of Top-Down parser with example.	[4]
	b)	Construct a PDA that recognizes the language accepted by DFA.	following [6]

c) Construct a NPDA that accepts the language $L = \{a^{2n} | n > 0\}$ [6]

OR

- What do you mean by NP- problems? Justify that Travelling Salesman **Q7**) a) problem is NP problem.
 - Explain the vertex cover problem in the context of polynomial time b) reduction. Justify with suitable example. [8]

OR

Q8) a) Write short notes on [8]

- Undecidability i)
- Post Correspondence Problem ii)
- What is Universal Turing Machine? Comment on stored program concept b) with reference to the same. [8]

Strange of the strang Strate of the st