Total No. of Questions : 12]

P1417

SEAT No. :

[Total No. of Pages : 3]

[4858] - 184

T.E. (Computer) (Semester - I) DIGITAL SIGNAL PROCESSING

(2008 **Pattern**)

Time: 3 Hours] [Max. Marks: 100

Instructions to the candidates :-

- 1) Answers to the two sections should be written in separate answer books.
- 2) Answer any three questions from each section.
- 3) Neat diagrams must be drawn wherever necessary.
- 4) Figures to the right side indicate full marks.
- 5) Use of Calculator is allowed.
- 6) Assume Suitable data if necessary.

SECTION - I

- Q1) a) Determine the values of power and energy of the following signals.Find whether the signals are power, energy or neither energy nor power signals.[15]
 - i) $x(n) = (1/3)^n u(n)$
 - ii) $x(n) = \sin(\pi/4 n)$
 - iii) $x(n) = e^{2n}u(n)$
 - b) What is Nyquist rate? Draw block diagram of ADC. [3]

OR

- Q2) a) What is discrete time system? Explain any three classification of discrete time system with example. [13]
 - b) Define impulse response of a discrete time system. Show that h(n) = 0 for n < 0. [5]

P.T.O.

<i>Q3</i>)	a)	Compute circular convolution of the following sequence:	[8]
		$x_1(n) = \{1, 1, 2, 1\}$ and $x_2(n) = \{1, 2, 3, 4\}$	
	b)	Obtain DTFT, magnitude and phase for $x(n) = u(n) - u(n - 4)$	[8]
		OR	
Q4)	a)	What is zero padding? What are its uses?	[4]
	b)	State and prove periodicity property of DFT.	[8]
	c)	Find the sequence $x(n)$ if its Fourier transform $X(e^{jw}) = 1$.	[4]
Q5)	a)	State and prove convolution property of Z- transform. Compute convolution $x(n)$ of the signals $x_1(n) = \{1, -2, 1\}$ and $x_2(n) = \{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1$	1, 1}
	b)	What is mean by radix-2 FFT? Draw the 4-point radix-2 DIT butterfly structure for DFT.	[10] FFT [6]
		OR	
Q6)	a)	State and prove linearity property of Z- transform. Determine the and ROC of the signal $x(n) = [3(2^n) - 4(3^n)] u(n)$.	e ZT [10]
	b)	Calculate DFT of the sequence $x(n) = cos(\pi n/2)$ where $N = 4$ u DIFFFT algorithm.	sing [6]
		SECTION - II	
Q 7)	a)	An impulse response of discrete time system is $u(n)$. What will output of the system if the input is:	ll be
		i) $\delta(n)$ and ii) $u(n)$? Whether this system is stable?	[8]
	b)	.A system has unit sample response h(n) given by h(n) = $-1/4$ δ (n+1) + $1/2$ δ (n) $-1/4$ δ (n-1)	[8]
		i) Is the system BIBO stable?	
		ii) Is the filter causal?	
		iii) Compute the frequency response and plot it	
		OR	
Q 8)	a)	LTI system is described by $h(n) = (0.9)^n u(n)$. Calculate and magnitude response of the system.	plot [8]
	b)	State and prove time advance property of unilateral Z transform.	[8]
[4858] - 184		184 2	

- **Q9**) a) State the characteristics of ideal filter. What are the advantages and disadvantages of digital filter over analog filter. [10]
 - b) $H_a(S)$ is given as, $Ha(s) = \frac{1}{(s+1)}$ and $T_s = 1$ sec. Find H(z) using bilinear transformation method and also write the difference equation of digital filter. [8]

OR

- Q10) a) Determine the unit sample response of the ideal low pass filter. Why it is not realizable? [8]
 - b) The system function of the analog filter is given as $Ha(s) = \frac{(s+0.1)}{(s+0.1)^2 + 16}$ Obtain the system function of the digital filter using bilinear transformation which is resonant at $W_r = \pi/2$. [10]
- Q11) a) Write a note on applications of DSP in speech processing. [8]
 - b) Compare DSP processor and general purpose processors. [8]

www.sppuonline.com

- Q12) a) What is the use of DAG1 and DAG2 in ADSP 2IXX family? With example explain the use of various memory pointer registers of DAG1 and DAG2. [8]
 - b) Obtain the system function H(z) and difference equation for $h(n) = \{1, -2, -2, 3\}$. Draw a direct form FIR filter structure. [8]
