Total No. of Questions-8]

[Total No. of Printed Pages-5
[5668]-191
S.E. (Comp. \& 1T) (Second Semester) EXAMINATION, 2019

ENGINEERING MATHEMATICS-III

(2015 PATTERN)

Time : Two Hours
Maximum Marks : 50
N.B. :- (i) Neat diagrams must be drawn wherever necessary.
(ii) Figures to the right indicate full marks.
(iii) Use of electronic pocket calculator is allowed.
(iv) Assume suitable data if neepssary.

1. (a) Solve any two differential equations :
(i) $\frac{d^{2} y}{d x^{2}}+7 \frac{d y}{d x}-2 y=e^{4 x} \cosh 2 x$
(ii) $\quad x^{2} \frac{d^{2} y}{d x^{2}}-3 x \frac{d y}{d x}+3 y=x^{2} \sin (\log x)$
(iii) $\frac{d^{2} y}{d x^{2}}-8 \frac{d y}{d x}+16 y=\frac{e^{4 x}}{x^{6}}$, by using the method of variation of parameters.
(b) Solve the integral equation :

$$
\int_{0}^{\infty} f(x) \sin \lambda x d x=\left\{\begin{array}{cc}
1-\lambda, & 0 \leq \lambda \leq 1 \\
0, & x>1
\end{array}\right.
$$

2. (a) A capacitor of 10^{-3} farads and inductor of (0.4) henries are connected in series with an applied emf 20 volts in an electrical circuit. Find the current and charge at any time t.
(b) Solve any one of the following :
(i) Obtain $z\left[k e^{-k}\right], k \geq 0$
(ii) Obtain $z^{-1}\left[\frac{8 z}{(z-1)(z-2)}\right],|z|>2, k \geq 0$.
(c) Solve the difference equation :

$$
y_{k+1}+\frac{1}{2} y_{k}=\left(\frac{1}{2}\right)^{k}
$$

where $y_{0}=0, k \geq 0$.
3. (a) The first three moments of a distribution about the value 2 are 1,16 and -40 . Find the first three central moments, standard deviation and β_{1}.
(b) Fit a straight line of the form $\mathrm{X}=a \mathrm{Y}+b$ to the following data by the least square method :

(c) On an average, there are printing mistakes on a page of a book. Using Poisson distribution, find the probability that a randomly selected page from the book has at least one printing mistake.

Or

4. (a) 200 students appeared for an examination. Average marks were 50% with standard deviation 5%. How many students are expected to score at least 60% marks assuming that marks are normally distributed. [Given : $\mathrm{Z}=2, \mathrm{~A}=0.4772$
(b) On an average, a box containing 10 articles is likely to have 2 defectives. If we consider consignment of 100 boxes, how many of them are expectedoto have at the most one defective ?
(c) Find the regression equation of Y on X for a bivariate data with the following details. $n=25, \sum_{i=1}^{n} x_{i}=75, \sum_{i=1}^{n} y_{i}=100$, $\sum_{i=1}^{n} x_{i}{ }^{2}=250, \sum_{i=1}^{n} x_{i}^{2}=500, \sum_{i=1}^{n} x_{i} y_{i}=325$.
[4]
5. (a) Find the directional dervative of $\phi(x, y, z)=x y^{3}+y z^{3}$ at the point $(2,-1,1)$ in the direction of vector $\bar{i}+2 \bar{j}+2 \bar{k}$.
(b) Show that $\overline{\mathrm{F}}=\left(x^{2}-y z\right) \bar{i}+\left(y^{2}-(z) j^{2}+\left(z^{2}-x y\right) \bar{k}\right.$ is irrotational. Hence find the scalar potential ϕ suach that $\overline{\mathrm{F}}=\nabla \phi$.
(c) Evaluate $\oint_{\mathrm{C}} \overline{\mathrm{F}} . d \bar{r}$ where $\widehat{\overline{\mathrm{F}}}=\sin z \bar{i}+\cos x \bar{j}+\sin y \bar{k}$ and C is the boundary of the rectangle $0 \leq x \leq \pi$ and $0 \leq y \leq 1$ and $z=3$.

Or

6. (a) Show that (any one):
[4]
(i) $\nabla_{0} \cdot\left[r \nabla\left(\frac{1}{r n}\right)\right]=\frac{n(n-2)}{r^{n+1}}$
(ii) $\nabla^{2} f(r)=f^{\prime \prime}(r)+\frac{2}{r} f^{\prime}(r)$.
(b) Find the directional derivative of $\phi=x=x y^{2}+y z^{3}$ at $(1,-1,1)$ towards the point ($2,1,-1$.
(c) If :

$$
\overline{\mathrm{F}}=\left(2 x y+3 z^{2}\right) \bar{i}+\left(x^{2}+4 y z\right) \bar{j}+\left(2 y^{2}+6 x z\right) \bar{k}
$$

Evaluate :

$$
\hat{O}_{\mathrm{C}} \int_{\mathrm{F}} \overline{\mathrm{~F}} \cdot d \bar{r}
$$

where C is the curve $x=t, y=t^{2}, z=t^{3}$ joining the points $(0,0,0)$ and $)^{\circ}(1,1,1)$.
7. (a) Determine the analytic function $f(z)=\sim+i v$ if $u=$ $4 x y-3 x+2$.
(b) Find the bilinear tranformation which maps the point $z=i,-1,1$ into the point $w=00,1 \infty$.
(c) Evaluate :

$$
\begin{equation*}
\int_{\mathrm{C}} \frac{3 z+4}{(z-1)(z-2)} d z \tag{5}
\end{equation*}
$$

where C is the circle $|z-1|=\frac{3}{2}$.
Or
8. (a) Determine the analytic function $f(z)=u+i v$ if $u=x^{2}$ $y^{2} \rightarrow^{8} 2 x y-2 x-y-1$.
(b) Under the transformation $w=\frac{1}{z}$, find the image of $|z-3 i|=3$.
(c) Evaluate :

where C is the circle $|z|=\frac{3}{2}$.

