SEAT NO.:	

[Total No. of Pages : 2]

S.E. (Computer) 2008 Course Computer Organization Semester II(May 2014) 2008 Course

Time: 3 Hours Max. Marks: 100

Instructions to the candidates:

- 1) Answers to the two sections should be written in separate answer books.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right side indicate full marks.

		SECTION I	
Q1)	a)	Explain the general architecture of IAS.	[8]
	b)	Draw the flowchart for restoring unsigned division algorithm and divide the following numbers using the same algorithm and justify your answer Dividend= 22, Divisor = 6	[10]
		OR	
Q2)	a)	Represent the following numbers into single precision and double precision format. i. 208.1875	[10]
	b)	ii. 135.76Multiply the following pair of numbers using Booth's algorithm method.	[8]
		Multiplicand= -12 Multiplier=6	
Q3)	a)	What is addressing mode? Explain different addressing modes detail with suitable example	[8]
	b)	What is the segmentation? Discuss the different segmentation schemes in 8086. OR	[8]
Q4)	a)	Explain instruction cycle with the help of state diagram.	[8]
	b)	Write difference between data hazard and instruction hazard.	[8]
Q5)	a)	Draw and explain the instruction format of 8086.	[8]
	b)	Enlist different design methods of Hardwired Control unit. Explain any one. OR	[8]
Q6)	a)	Write control sequence for an unconditional branch instruction	[4]
Q0)	b)	Give an example of Micro programmed control instructions	[6]
		SECTION –II	
Q7)	a)	What is physical address? Explain the procedure of converting Virtual address to Physical address with suitable diagram.	[10
v.sppu	þ)		[8]
v.sppu	oniine	e.com	

		OR	
Q8)	a)	List and explain policies used with cache memory and state write policy for virtual memory with justification	[10]
	b)	Explain the RAID2 scheme with suitable example.	[8]
Q9)	a)	Explain the working principle of the following: 1. Display Devices 2. Scanners	[8]
	b)	What is the use of DMA? What is the cycle stealing in DMA?	[8]
		OR	
Q10)	a)	Explain the SIMD and MIMD architecture with suitable diagram.	[8]
Q10)	b)	What is interrupt? Differentiate vectored and non vectored interrupts.	[8]
Q11)	a)	Explain NUMA cache coherency method in detail.	[8]
,	b)	Differentiate RISC and CISC architectures.	[8]
		OR	
Q12)	a)	What are the methods of bus arbitration? Explain polling method of bus arbitration with a diagram.	[8]
	b)	Write short notes on followings i. Superscalar Architecture ii. Array Vector Processor	[8]