Total No. of Questions—12] [Total No. of Printed Pages—8+4

[3862]-211

S.E (I.T. & Comp.) (First Semester) EXAMINATION, 2010 DISCRETE STRUCTURES

(2008 Course)

Time: Three Hours

Maximum Marks: 100

- N.B. :— (i) Attempt from Section I Q. 1 or Q. 2, Q. 3 or Q. 4,
 Q. 5 or Q. 6. Attempt from Section II Q. 7 or Q. 8,
 Q. 9 or Q. 10, Q. 11 or Q. 12.
 - (ii) Answers to the two Sections should be written in separate answer-books.
 - (iii) Neat diagrams must be drawn wherever necessary.
 - (iv) Assume suitable data, if necessary.

SECTION I

1. (a) Prove by induction for $n \ge 0$

[6]

$$1 + a + a^2 + \dots + a^n = \frac{1 - a^{n+1}}{1 - a}.$$

(b) In a survey of 60 people it was found that:

[6]

- 25 read Business India
- 26 read India Today
- 26 read Times of India
- 11 read both Business India and India Today

P.T.O.

- 9 read both Business India and Times of India
- 8 read both India Today and Times of India
- 8 read none of these.
- (i) How many read all three?
- (ii) How many read exactly one?
- (c) Prove that $[(p \to q) \land (r \to s) \land (p \lor r)] \to (q \lor s)$ is a tautology. [4]

Or

2. (a) Let P and Q be 2 multisets.

 $P = \{a, a, a, c, d, d\}$ and $Q = \{a, a, b, c, c\}$. Find: [4]

- (i) $P \cup Q$
- (ii) P \cap Q
- (iii) P Q
- (iv) P + Q
- (b) P(x) : x is even.

[6]

Q(x): x is a prime number.

R (x, y): x + y is even.

- (1) Using above write an English sentence for each of the symbolic statement given below:
 - (i) $\forall x \ (\sim Q \ (x))$
 - $(ii) \exists y (\sim P(y))$
 - $(iii) \sim (\exists x (P(x) Q (x)))$

- (2) Using the information given above write the following English sentences in symbolic form:
 - (i) The sum of any two integers is an odd integer
 - (ii) Every integer is even or prime
 - (iii) Every integer is an odd integer.
- (c) Find the CNF and DNF for the following: [4] $(i) \quad (p \rightarrow q) \ \land \ (q \rightarrow p)$
 - $(ii) ((p \land (p \rightarrow q)) \rightarrow q)$
- (d) Define power set.

 List all elements of the set p(A) XA where $A = \{a, b, c\}$. [2]
- 3. (a) Show that (I, \oplus, \odot) is a commutative ring with identity. Where + and \odot are defined as: [6] $A \oplus b = a + b 1 \text{ and } a \odot b = a + b ab.$
 - (b) Let Z_n denote the set of Integers as $\{1, ..., n-1\}$. Construct the multiplication table for \odot with n=6. Is (Z_n, \odot)
 - Where \odot is a binary operation on Z_n such that $a \odot b =$ remainder of ab divided by n. Is Z_n an abelian group?
 - (c) Let G be a group of real nos under addition and G' be the group of +ve real nos under multiplication. Let $f: G \to G'$ be defined as $f(x) = e^x$. Show that f is an isomorphism. [4]

[3862]-211

P.T.O.

4. (a) Define:

www.sppuonline.com

- (i) Subgroup
- (ii) Cyclic Group
- (iii) Integral domain
- (iv) Field

(b) Prove the following results for the group G:

[6]

- (i) The identity element is unique.
- (ii) Each a in G has a unique inverse a^{-1} .
- (iii) ab = ac implies b = c.

(c) Consider the (3, 6) encoding function e:

[6]

$$e(001) \ = \ 000000$$

$$e(001) = 000110$$

$$e(010) = 010010$$

$$e(011) = 010100$$

$$e(100) = 100101$$

$$e(101) = 100011$$

$$e(110) = 110111$$

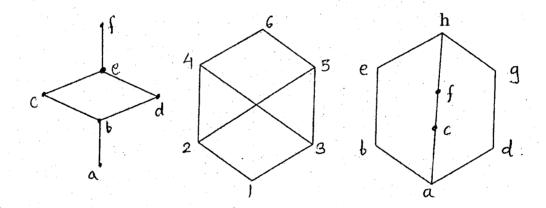
$$e(111) = 110001$$

Show that e is a group code.

5. (a) Let A = B be the set of real nos.

[6]

$$f: A \rightarrow B$$
 given by $f(x) = 2x^3-1$


[3862]-211

4

$$g : B \rightarrow A \text{ given by } g(y) = \sqrt[3]{\frac{1}{2}y + \frac{1}{2}}$$

Show that f is a bijection between A and B and g is bijection between B and A.

- (b) For each of these relations on set $A = \{1, 2, 3, 4\}$ decide whether it is reflexive, symmetric, transitive or antisymmetric. (one relation may satisfy more than one properties). [6] $R_1 = \{(1, 1), (2, 2), (3, 3), (4, 4)\}$ $R_2 = \{(1, 1), (1, 2), (2, 2), (2, 1), (3, 3), (4, 4)\}$ $R_3 = \{(1, 3), (1, 4), (2, 3), (2, 4), (3, 1), (3, 4)\}$
- (c) Determine whether the poset represented by each of the Hasse diagram are lattices. Justify your answer. [6]

Or

6. (a) Find the solution to the recurrence relation

$$a_n = 6 \ a_{n-1} - 11 \ a_{n-2} + 6a_{n-3}$$

with initial condition $a_0 = 2$, $a_1 = 5$ and $a_2 = 15$. [6]

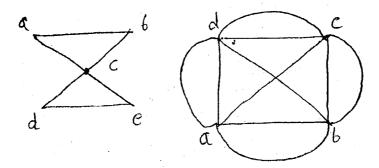
[3862]-211

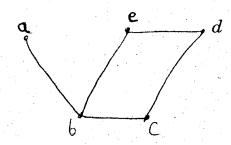
5

P.T.O.

(b) A = {1, 2, 3, 4, 5} and R and S be equivalent wedgetions into come A whose matrices are given below. Compute the matrix of smallest relation containing R & S. [6]

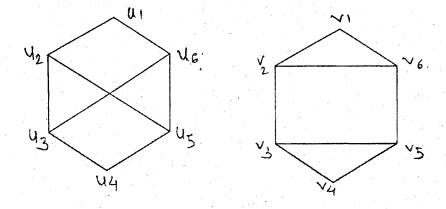
$$\mathbf{M_R} = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} \qquad \mathbf{M_s} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

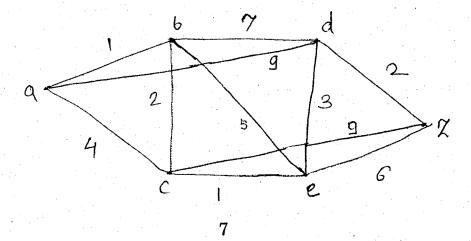

(c) Define with examples:


[6]

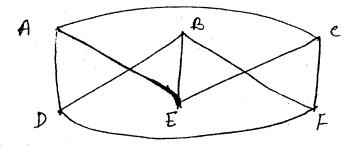
- (i) Poset
- (ii) Lattice
- (iii) Complemented Lattice.

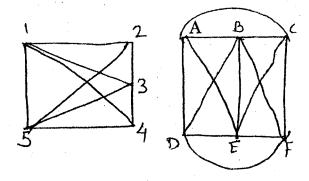
SECTION II


7. (a) Which of the following graphs have a Euler circuit or path or Hamiltonian cycle? Write the path or circuit: [6]



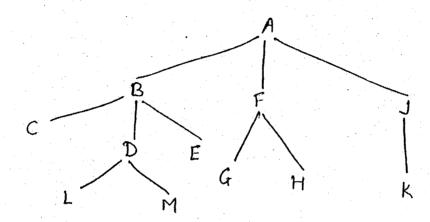
(b) Determine whether graphs G and H are isomorphic or not.


Justify your answer. [6]

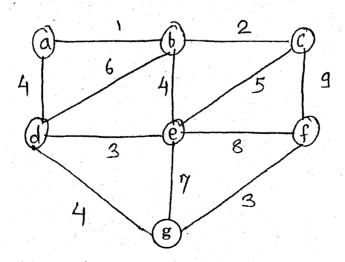


(c) Find the shortest path from a to z in the following graph. [6]

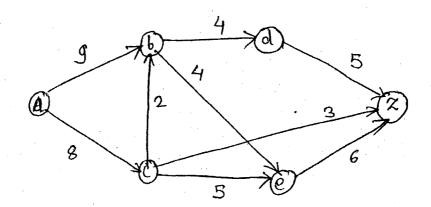
- 8. (a) State and prove Euler's formula for a connected planar graph of order n, size e and with f faces. [6]
 - (b) Define the following with suitable example: [6]
 - (i) Cut set
 - (ii) Factors of graph
 - (iii) Weighted graph.
 - (c) Identify whether the graphs given are planar or not. Draw planar representation if possible: [6]

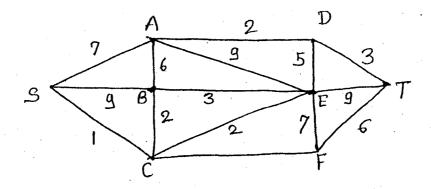


9. (a) A binary tree has 10 nodes. The inorder and preorder traversals of the trees are as shown below. Construct the binary tree.


Inorder: ABCEDFJGIH

Preorder: JCBADEFIGH


(b) Convert the following tree into binary tree. [4]


(c) Using Prim's algorithm construct minimal spanning tree starting at vertex a. [6]

10. (a) Find the maximum flow in the transport network given below: [6]

- (b) Construct the expression tree for the following expression. $(3-(2(-11-(9-4))))\div(2+(3+(4+7))). \ [4]$ Also evaluate the expression.
- (c) Using Kruskal's algorithm construct minimal spanning tree. [6]

11. (a)	A single card is drawn from an ordinary deck of 52 car	ds. .com
	Find the probability p that :	[3]
	(i) the card is a face card	
	(ii) the card is face card and heart	
	(iii) the card is face card or heart.	
(<i>b</i>)	How many seven letter words can be formed using the lett	ers
	of the word BENZENE ?	[3]
(c)	Two dice are tossed once. Find the probability of getting	an
	even number on first or a total of 8.	[4]
(d)	If repetitions are not permitted, how many four digit number	oers
	can be formed from digits 1, 2, 3, 7, 8, and 5.	[6]
	Or	
12. (a)	How many ways can the letters in the word MISSISSI	[PPI
	be arranged? What if P's are to be separated?	[4]
(b)) Show that:	
	$C(2n, 2) = 2C(n, 2) + n^2.$	[6]
(c)	A pair of fair dice is thrown. Find the probability p that	the
	sum is 10 or greater if:	[3]
	(i) 5 appears on first die	
	(ii) 5 appears on at least one die.	
w.sppuonline [3862]-2		чт.О.

- appear :
 - (i) Three heads
 - (ii) Exactly 2 heads
 - (iii) No heads.

www.sppuonline.com