Total No. of Questions-12]

[Total No. of Printed Pages-4

[4757]-184

S.E. (Computer) (I Sem.) EXAMINATION, 2015 DATA STRUCTURES AND ALGORITHM (2008 PATTERN)
Time : Three Hours
Maximum Marks : 100
N.B. :- (i) Answer three questions from Section I and three questions from Section II.
(ii) Answers to the two Sections should be written in separate answer-books.
(iii) Figures to the right indicate full marks.
(iv) Assume suitable data, if necessary.

SECTION I

1. (a) What is recursion ? Explain with example. What are its advantages and disadvantages ?
(b) Explain with example primitive functions for file handling in C .

Or

2. (a) Suppose you are given an array $\mathrm{s}[1 \ldots . \mathrm{n}]$ and a procedure reverse ($\mathrm{s}, \mathrm{i}, \mathrm{j}$) which reverses the order of elements in a between positions i and j (both inclusive). What will be the output of the following sequence of stamen if s[100011]. Show step by step change in s .
3. while ($1<\mathrm{k}<=\mathrm{n}$)
1.1 reverse ($\mathrm{s}, 1, \mathrm{k}$);
1.2 reverse ($\mathrm{s}, \mathrm{k}+1, \mathrm{n}$);
1.3 reverse (s, 1, n);
(b) Write a recursive function for the following and show step by step function cal $f(5)$:

$$
\begin{align*}
\mathrm{f}(\mathrm{n}) & =\mathrm{n} & & \text { if } \mathrm{n}=0,1 \\
& =\mathrm{f}(\mathrm{n}-1)+\mathrm{f}(\mathrm{n}-2) & & \text { otherwise. } \tag{8}
\end{align*}
$$

(c) Explain pass by value and pass by reference parameter passing to function with example.
3. (a) State whether it is correct or incorrect. Justify your answer.
(1) $10 \mathrm{n}^{2}+9=\mathrm{O}(\mathrm{n})$
(2) $\mathrm{n}!=\mathrm{O}\left(\mathrm{n}^{\mathrm{n}}\right)$
(3) $3 \mathrm{n}+6=\mathrm{O}(\mathrm{n})$.
(b) What is the frequency count of the following :
float sum(int $a[10]$, int n)
\{
int $\mathrm{s}=0$;
for(int $\mathrm{i}=1 ; \mathrm{i}<=\mathrm{n} ; \mathrm{i}++$)
$\mathrm{s}+=\mathrm{a}[\mathrm{i}] ;$
return(s);
\}
Find out time complexity.
[5]
(c) Write 'C' functions to display transpose of a matrix. What is its time complexity ?

Or
4. (a) Write an algorithm for multiplication of two matrices and find out its time complexity and space complexity.
(b) Explain asymptotic notation.
5. (a) Write an ADT for sparse matrix. Write an algorithm for sparse matrix addition.
(b) What is column major and row major representation methods of an array ? Derive the address calculation formula for both methods.

Or

6. (a) What is sparse matrix ? Write an algorithm to find simple transpose of sparse matrix. Compare fast transpose and simple transpose method.
(b) Write an ADT for polynomial. Write algorithm for polynomial evaluation.
[6]

SECTION II

7. (a) Sort the following numbers step by step by using quick sort : Also comment on time complexity of quick sort in best case worst case and average case :

$$
\begin{equation*}
5,3,8,9,12,7,10,2,-6,1 \tag{10}
\end{equation*}
$$

(b) Write an algorithm for shell sort.

Or
8. (a) Write and explain with an example algorithm for radix sort. What is time complexity of radix sort ?
(b) Write an algorithm for Binary Search. Explain its best case, worst case and average case complexity with example. [10]
9. (a) Write pseudo code to reverse singly linked lists of string data. Analyze time complexity of this code.
(b) Write a node structure for Generalized linked list. Show graphical representation for the following GLL :

$$
\begin{equation*}
(\mathrm{a}, \mathrm{~b},(\mathrm{~d},(\mathrm{e}, \mathrm{f}), \mathrm{g},(\mathrm{~h}, \mathrm{l}), \mathrm{m})) \tag{8}
\end{equation*}
$$

Or

10. (a) Write and explain a node structure to represent polynomial using GLL. What are the advantages of using GLL for polynomial representation ?
(b) Write a function to perform addition of two polynomial using circular linked list. Explain time complexity of it.
11. Write short notes onvww.sppuonline.com
(1) Stack application
(2) Josephus problem
(3) Double ended queue and its primitive operations.

Or

12. (a) Write an algorithm to convert prefix expression to infix expression. Comment on its time complexity.
(b) Convert the following infix expression to postfix expression and evaluate the postfix expression with the following values : [10]

$$
(a+(b * c) / e \wedge f-(g * h))
$$

$\mathrm{A}=10, \mathrm{~b}=\mathrm{c}=4, \mathrm{e}=2, \mathrm{f}=3, \mathrm{~g}=1, \mathrm{~h}=5$.

