Total No. of Questions-8]

[Total No. of Printed Pages-3
[5559]-183

S.E. (Computer Engineering) (I Sem.) EXAMINATION, 2019 DATA STRUCTURES AND ALGORITHMS

(2015 PATTERN)

Time : Two Hours
Maximum Marks :
N.B. :- (i) Attempt Q. No. 1 or Q. No. 2, Q. No. 3 or Q. No. 4, Q. No. 5 or Q . No. 6, Q. No. 7 or Q. No. 8.
(ii) Draw neat diagrams wherever necessary.
(iii) Figures to the right indicate full marks.
(iv) Assume suitable data, if necessary.

1. (a) Write pseudo $\mathrm{C} / \mathrm{C}++$ code to perform simple transpose of sparse matrix.
(b) State the characteristics of an algorithm.
(c) What is complexity analysis of an algorithm? Explain the notations used in the complexity analysis.

Or

2. (a) What is sparse matrix ? Explain its representation with an example.
(b) Define :
(i) ADT
(ii) Data structure.
(c) Solve the recurrence relation :
[6]

$$
\begin{gathered}
a_{r}-10 a_{r}-1+9 a_{r}-2=0 \\
\text { with initial conditions } a_{0}=3 \text { and } a_{1}=11 .
\end{gathered}
$$

3. (a) Explain polynomial representation using linked list with an example.
(b) Define :
(i) Recursion
(ii) Stack
(iii) Linked List.
(c) Explain process of conversion of an infix expression to postfix expression using stack :

$$
\mathrm{A} *(\mathrm{~B}-\mathrm{C}) / \mathrm{E} \wedge \mathrm{~F}+\mathrm{G} .
$$

Or

4. (a) Explain use of backtracking in 4-Queen's problem.
(b) Explain the concept of Generalized linked list.
(c) Write pseudo C/C++ code to represent circular linked list as an ADT.
5. (a) Write pseudo $\mathrm{C} / \mathrm{C}++$ code to implement a simple queue using linked list.
(b) Explain Dequeue with the insert and delete operations performed on it.

Or

6. (a) Write pseudo $\mathrm{C} / \mathrm{C}++$ code to implement a circular queue using arrays.
(b) What is Priority queue ? Describe the operations on priority queue and explain its applications.
7. (a) Write pseudo C/C++ code for radix sort.
(b) Write an algorithm for searching an element using binary search. Discuss the time complexity of algorithm in best case and worst case.

Or

8. (a) Explain insertion sort algorithm and sort the given list using insertion sort :

$$
\begin{equation*}
7,4,10,6,3,12,1,8,2,15,9,5 \tag{6}
\end{equation*}
$$

(b) Explain merge sort algorithm using divide and conquer strategy with an example. State its time complexity and space complexity.

