Total No. of Questions—8]

[Total No. of Printed Pages—3

Seat	
No.	

[5559]-183

S.E. (Computer Engineering) (I Sem.) EXAMINATION, 2019 DATA STRUCTURES AND ALGORITHMS

(2015 PATTERN)

Time: Two Hours

Maximum Marks: 50

- N.B. :— (i) Attempt Q. No. 1 or Q. No. 2, Q. No. 3 or Q. No. 4,
 Q. No. 5 or Q. No. 6, Q. No. 7 or Q. No. 8.
 - (ii) Draw neat diagrams wherever necessary.
 - (iii) Figures to the right indicate full marks.
 - (iv) Assume suitable data, if necessary.
- 1. (a) Write pseudo C/C++ code to perform simple transpose of sparse matrix. [4]
 - (b) State the characteristics of an algorithm. [2]
 - (c) What is complexity analysis of an algorithm? Explain the notations used in the complexity analysis. [6]

Or

2. (a) What is sparse matrix? Explain its representation with an example. [4]

P.T.O.

		(i) ADT	
		(ii) Data structure.	
	(c)	Solve the recurrence relation:	[6]
		$a_r - 10a_{r-1} + 9a_{r-2} = 0$	
		with initial conditions $a_0 = 3$ and $a_1 = 11$.	
		C 230	
3.	(a)	Explain polynomial representation using linked list with	an
		example.	[3]
	(b)×	Define:	[3]
		(i) Recursion	
		(ii) Stack	
		(iii) Linked List.	
	(c)	Explain process of conversion of an infix expression to post	tfix
		expression using stack :	[6]
		$A * (B - C)/E ^ F + G.$	
		Or	
4.	(a)	Explain use of backtracking in 4-Queen's problem.	[4]
	(<i>b</i>)	Explain the concept of Generalized linked list.	[2]
	(c)	Write pseudo C/C++ code to represent circular linked list	as
		an ADT.	[6]
5550	0]-183	2	
	/ I = I () · I		

Define:

(*b*)

[2]

(a) Write pseudo C/C++ code to implement a simple queue using linked list.
(b) Explain Dequeue with the insert and delete operations performed on it.

Or

- **6.** (a) Write pseudo C/C++ code to implement a circular queue using arrays. [6]
 - (b) What is Priority queue ? Describe the operations on priority queue and explain its applications. [7]
- 7. (a) Write pseudo C/C++ code for radix sort. [6]
 - (b) Write an algorithm for searching an element using binary search. Discuss the time complexity of algorithm in best case and worst case. [7]

Or

8. (a) Explain insertion sort algorithm and sort the given list using insertion sort: [6]

7, 4, 10, 6, 3, 12, 1, 8, 2, 15, 9, 5.

(b) Explain merge sort algorithm using divide and conquer strategy with an example. State its time complexity and space complexity. [7]

[5559]-183