B.E.(Civil) STRUCTURAL DESSIGN AND DRAWING -III (2015 Pattern) (Semester - I)

Time : $1^{11 / 2}$ Hours!
[Max. Marks : 30
Instructions to the candidates :

1) Answer Q. 1 or Q.2, Q. 3 or Q.4, Q. 5 or Q.6.
2) Neat diggrams must be drawn wherever necessary.
3) Figures io the right indicate full marks.
4) Use of non programmable electronic calculator is allowed.
5) Assume suitable data, if necessary.
6) Assessment will be based on complete solution and not on final answer.
7) IS 1343:2012 and IS 456:200 arealiowed in the examination.

Q1) a) Explaining with suitable diagran 0_{0} the concept of prestressing. Justify the use of high grade materials in prestressed member.
b) A 12 m long post terisioned concrete beam of rectangular cross section of $450 \mathrm{~mm} \times 600 \mathrm{~mm}$ is prestressed by strands carrying initial prestressing force of 550 kN . The cross sectional area of the strands is $40 \mathrm{~mm}^{2}$.If all strands are tensioned simultaneously, find the loss due to elastic shortening of concrefe. Calculate the percentage loss due shrinkage for relative humidity 50% at the end of eight months M50 grade of concrete is used with the transfer of the stress taking place at 14 days.

OR

Q2) a) Give the merits and demerits of Prestressed Concrete over Reinforced Cement Concrete.
b) A rectangular concrete beam $300 \mathrm{~mm} \times 400 \mathrm{~mm}$ dep is prestressed by a force of 540 kN at an constant eccenticity of 60 mm . The beam supports a concentrated load of 80 kN at thecenter of a span of 3 m . Determine the location of pressure line at center, quarter span and support section of the beam. Neglect the self weyight of the beam. Find the stresses at the support and midspan using any method.
[6]
P.T.O.

Q3) a) Using the codal provisions of IS 1343:2012, determine ultimate shear resistance of the support section.Section is unsymmetrical I-section with overall depth of $1000 \mathrm{~mm}, \mathrm{bw}=150 \mathrm{~mm}$. Top flange $500 \times 250 \mathrm{~mm}$ and bottom Trange $350 \times 300 \mathrm{~mm}$. The beam is subjected to prestressing force of 1597.47 kN at an eccentricity of' 50 mm above the neutral axis, at support and 150 mm below the neutral axis at midspan Take Toss ratio as 0.8 . The ultimate shear force of 227.1 kN exists at support section. Consider fck $40 \mathrm{~N} / \mathrm{mm}^{2}$. Design the supportsection for limit state of collapse: shear.
b) Explain inbrief the design of bursting reinforcement in the end block in post tensionedprestressed concrete girder and concept of transmission length in pretensioned beam.

Q4) a) A simplessupported one way post tensioned slabssupporting a live load of $12 \mathrm{kN} / \mathrm{m}^{2}$ is spanning over 10 m . The grade of concrete used is M40 and the cube strength of concrete at transfer as 30 MPa . The conopressive stresses are not likely to increase in service conditions. Determine the minimum depth of slab required if it is to be designed a as
[7]
i) Type I Structure,
ii) Type II Structure. Take loss ratio) as 0.8 .
b) Explain the limit state of serviceablity criteria for design of slabs. [3]

Q5) A PT flat slab of a large hah measures $15 \mathrm{~m} \times 20 \mathrm{~m}$. The slab is supported by columns (500×500) mat arranged at $5.0 \mathrm{~m} \mathrm{c} / \mathrm{c}$ along both the directions. The thickness of the flat stab is 160 mm . The size of drop is $1.8 \mathrm{~m} \times 1.8 \mathrm{~m}$ and has a thickness of 240 mm . The imposed load on the slab is $3.5 \mathrm{kN} / \mathrm{ma}^{2}$. The effective cover is 30 mm . In the interior panel along the longer direction calculate the range of eccentricities at interior support and mid-span [10] OR
Q6) A PT flat slab of a latge hall measures $15 \mathrm{~m} \times 20 \mathrm{~m}$. The stab is suppported by columns $(500 \times 500) \mathrm{mm}$ arranged at $5.0 \mathrm{~m} \mathrm{c} / \mathrm{c}$ along both the directions. The thickness of the flat slab is 160 mm . The size of dropis 1.8 m 1.8 m and has a thickness of 240 mm . The imposed load on thenstab is $3.5 \mathrm{kN} / \mathrm{m}^{2}$ The effective cover is 30 mm . In the exterior panel (forithe end-span) along longer direction, calculate the range of eccentricities at end-support. midspan and interior support.

みมย

BE/Insem.-503

