T.E. (Civil)

FLUID MECHANICS - II

(2015 Pattern)
Time: 2½ Hours]
[Max. Marks : 70
Instructions to the condidates:

1) Neat diagrams must be drawn wherever necessary.
2) Figures to the right indicate full marks.
3) Use of logarithmic tables slide rule, Mollier charts, eelectronic pocket calculator and steam tables is allowed.
4) Assume suitable data, if necessary.
5) Solve $Q .1$ or Q.2, Q. 3 or Q.4, Q. 5 or Q.6., Q. 7 or Q.8.

Q1) a) ${ }^{\text {Explain the }}$ following terms withneat sketches :
i) Surge Tank and its functions
ii) Water Hammer
b) Derive the energy equation with usual notations for open channel flow.[6]
c) Following data is given forthe irrigation channel of trapezoidal section :
i) Side slope $=3 \mathrm{H}: 2 \mathrm{~V}$
ii) $Q=12 \mathrm{~m}^{3} / \mathrm{s}$
iii) Longitudinal slope is 1 in 4500 and
iv) The channel is to be lined for which the value of Manning's coefficient is $n=0.012$
Find the most economical section of the channel.

Q2) a) Following data is related to the flat plate moving in stationaryair
i) Speed of plate $=50 \mathrm{~km} / \mathrm{hr}$
ii) Size of the plate $=(1.5 \times 1.5) \mathrm{m}$
iii) Density of Air $=1.16 \mathrm{~kg} / \mathrm{m}^{3}$
iv) Coefficient of lift $=0.75$
v) Coefficient of drag $=0.15$ Find :
i) Lift force
ii) Drag force
iii) Resultant force
b) Derive the conditions for the mostegconomical trapezoidal Channel section.
c) A sluice gate discharges water into a horizontal rectangular channel with velocity of $5 \mathrm{~m} / \mathrm{s}$ and the depthof flow 0.30 m , width of channel is 6 m . Determine whether hydraulic jump will occur and if so, determine it's height and loss of energy per Newton of water. Also Determine power lost in the jump.

Q3) a) Define Centrifugatpump. Explain with neat sketch working of centrifugal pump
b) Ajet of water having a velocity of $20 \mathrm{~m} / \mathrm{s}$ impinging on a curved vane which is rooving with a velocity of $6 \mathrm{~m} / \mathrm{s}$. The jet makes an angle of 20° with the direction of motion of vane at the entry and leáves the vane at an angle of 120°. If the water enters and leaves the vake without shock, find the vane angles at inlet and outlet. Also find work done per second per unit weight of water striking the vane. Neglecffriction

OR
Q4) a) Derive the expression for forcerexertedby the jet on series of moving curved vanes. Consider jet is striking at the centre of symmetric vane. Also find efficiency and rirther aerive the condition for maximum efficiency.
b) Explain in brief :
i) Cavitation in centrifugal pump
ii) Heads in centrifugarpump
iii) Priming of cent fifugal pumps

Q5) a) Derive the expression for specific speed of hydraufic turbine $N s=\frac{N \sqrt{P}}{H^{5 / 4}}$.
b) A Pelton wheel is revolving at a speed of 180 n. p. m and develops 5000 KW when working under a head of 200 m with an overall efficiency of 70%. Determine unit speed, unit discharge and unit power. The speed ratio for the turbine is given as 0.47 . Also find the speed, discharge and power when this turbine is working undera head of 140 m .
[10]

Q6) a) Sketch a layout of typical hydroelectric power plant and explain in brief function of each element.
b) A Pelton wheel for the following specifications:
and the jet diameter is not to exceed one sixth of the wheel diameter.
Deternine:
i)

Diangeter of wheel
ii) $\quad N a$ of jet required
iii) Diameter of the jet. Take $\mathrm{C}_{\mathrm{v}}=0.98$ and Speed ratio $=0.45$

Q7) a) Classify channel bed slope and show various zones.
b) Derive the differential equation for Gradually Varied Flow usual notations.

$$
\frac{d y}{d x}=\frac{S_{o}-S_{f}}{1-\frac{Q^{2} T}{g A^{3}}}
$$

Q8) a) Explain "Direct step miethod" of GVF computations.
b) A rectangular channel 15 m wide carries a discharge with a normal depth of 3.2 m . The bed slope of the channelisa in 3500 . If at a certain section, the depth of flow is raised to 5 . Om by constructing a weir across the channel, how far upstream onthe section, the depth of flow would be within 10% of the normal depth. Use step method. Take two steps. Assume Manning's coefficientas 0.016 . Sketch the profile.

