Total No. of Questions—8]

[Total No. of Printed Pages-4

Seat	
No.	

[4856]-202

F.E. EXAMINATION, 2015 ENGINEERING PHYSICS (2012 PATTERN)

Time: Two Hours

Maximum Marks: 50

- **N.B.** :— (i) Neat diagrams must be drawn wherever necessary.
 - (ii) Figures to the right indicate full marks.
 - (iii) Use of logarithmic tables, slide rule, Mollier charts, electronic pocket calculator and steam tables is allowed.
 - (iv) Assume suitable data, if necessary.
 - (v) All questions are compulsory.

Constants:

$$h = 6.63 \times 10^{-34} \text{ J.sec}$$

 $e = 1.6 \times 10^{-19} \text{ C}$
 $m_e = 9.1 \times 10^{-31} \text{ kg}$
 $c = 3 \times 10^8 \text{ m/s}.$

- 1. (a) Prove that in Newton's rings by reflected light the diameter of dark ring is proportional to square root of a natural number. [6]
 - (b) Explain any two factors affecting the acoustics of a hall and remedies on that. [3]
 - (c) The classroom has dimension, $20 \times 15 \times 5$ m³. The reverberation time is 3.5 sec. Calculate the total absorption of its surface and the average absorption. [3]

P.T.O.

1	7	r
L	,	,

- 2. (a) Explain piezoelectric effect. Explain how piezoelectric oscillator is used to produce ultrasonic waves, with the help of a neat circuit diagram. [6]
 - (b) The resultant amplitude of a wave when monochromatic light is diffracted from a single slit is $E_{\theta} = E_m \frac{\sin \alpha}{\alpha}$. Then derive the condition of minima.
 - (c) A soap film having refractive index 1.33, and thickness 5×10^{-5} cm is viewed at an angle of 35° to the normal. Find the wavelengths of light in the visible spectrum which will be absent from the reflected light. [3]
- (a) Explain construction and working of Ruby Laser with the help of energy level diagram.
 - (b) What is Fermi level? Explain Fermi-Dirac probability distribution function. [3]
 - (c) Plane polarized light of wavelength 5×10^{-5} cm is incident on a piece of quarter cut parallel to the optic axis. Find the least thickness of quarter for which the O-ray and E-ray combine to form plane polarized light. [3]

Given : $\mu_0 = 1.5442$, $\mu_e = 1.5633$.

Or

4. (a) Explain Hall effect. Derive the equation of Hall voltage and Hall coefficient. [6]

[4856]-202

P.T.O.

<i>(b)</i>	State and prove Malus law. [3]				
(c)	Calculate the number of acceptors to be added to a germanium				
	sample to obtain the resistivity of 20 Ω cm. [3]				
	Given:				
$\mu = 1700 \text{ cm}^2/\text{V.sec.}$					
(a)	Deduce Schrodinger's time independent wave equation. [6]				
(b)	Define phase (wave) velocity. Show that the phase velocity				
	of matter wave is greater than the velocity of light. [4]				
(c)	Calculate the de Broglie wavelength of electron of energy				
	1 keV. [3]				
	Or				
(a)	State Heisenberg's uncertainty principle and prove it by thought				
	experiment of electron diffraction at a single slit. [6]				
(<i>b</i>)	What is wave function? Explain what is normalization of wave				
	function. [4]				
(c)	The lowest energy of an electron trapped in a rigid box is				
	4.19 eV. Find the width of the box in A.U. [3]				
(a)	Explain: [6]				
	(i) Critical field				
	(ii) Meissner effect.				
<i>(b)</i>	Explain any two properties of nano-particles in brief. [4]				
(c)	Explain the applications of nano-particles in electronic				
	industry. [3]				

3

[4856]-202

5.

6.

7.

Or

8.	(<i>a</i>)	Explain the synthesis of nano-particles by chemical method		
		colloidal form with diagram and example.	[6]	
	(<i>b</i>)	Explain in brief the BCS theory of superconductivity.	[4]	
	(c)	Give any six applications of superconductivity.	[3]	

www.sppuonline.com