Total No. of Questions—8]

[Total No. of Printed Pages-4

Seat	
No.	

[4956]-102

F.E. EXAMINATION, 2016

ENGINEERING PHYSICS

(2012 PATTERN)

Time: Two Hours

http://www.sppuonline.com

Maximum Marks: 50

- N.B. :- (i) Neat diagrams must be drawn wherever necessary.
 - (ii) Figures to the right indicate full marks.
 - (iii) Use of logarithmic tables, slide rule, Mollier charts, electronic pocket calculator and steam tables is allowed.
 - (iv) Assume suitable data, if necessary.
 - (v) All questions are compulsory.

Constants :— (i) Mass of electron = $m_e = 9.1 \times 10^{-31}$ kg

- (ii) Charge on electron = $e = 1.9 \times 10^{-19}$ C
- (iii) Mass of proton = $m_p = 1.673 \times 10^{-27} \text{ kg}$
- (iv) Mass of neurton = $m_n = 1.675 \times 10^{-27} \text{ kg}$
- (v) Planck's constant = $h = 6.63 \times 10^{-34}$ J.s.
- (vi) Velocity of light = $c = 3 \times 10^8$ m/s
- (a) For a plane diffraction grating, starting from the equations
 of resultant amplitude and intensity, derive conditions for maxima
 and minima of the diffraction pattern.

P.T.O.

(b)	Explain	how	ultrasonic	waves	are	used	for	detection	of	flaws
	in meta	1.								[3]

(c) A hall of dimensions 20 m × 20 m × 20 m has a reverberation time of 1.2 sec. Find average absorption coefficient. [3]

Or

- 2. (a) What is magnetostriction effect? Explain construction and working of magnetostriction oscillator. [6]
 - (b) Explain with suitable diagram how interference is used to design anti-reflection coating. [3]
 - (c) A parallel beam of light 622 nm incident on a glass plate of refractive index 1.5 such that angle of refraction into the plate is 60°. Calculate the smallest thickness of the plate which will appear dark by reflection. [3]
- 3. (a) What is double refraction? Explain this phenomenon on the basis of Huygen's theory. [6]
 - (b) What is Fermi energy in semiconductor? With the help of labeled diagram show the position of Fermi level in the case of a diode that is connected in forward bias.
 - (c) Calculate the number of acceptor atoms that need to be doped in germanium sample to obtain the resistivity of 8 Ω cm. [Given: mobility $\mu = 1600$ cm²/V.s] [3]

[4956]-102

http://www.sppuonline.com

_	
	-
"	

4.	(a)	Derive an expression for conductivity in case of intrinsic a	má
		extrinsic semiconductors.	6
	(b)	What is stimulated emission of radiations? Explain	its
		significance in production of laser.	[3
	(c)	Explain any one engineering application of laser.	[3]
5.	(a)	Deduce Schrödinger's time independent wave equation.	[6]
	(b)	State and explain Heisenberg's uncertainty principle.	[4
	(c)	Calculate de Broglie wavelength for a proton moving with veloc	city
		1 percent of velocity of light.	[3
		Or	
6.	(a)	Define phase velocity and group velocity. Show that gre	oup
		velocity is equal to particle velocity.	[6]
	(b)	Explain why probability of finding of a particle cannot	be
		predicted by the interpretation of wave function ψ. Expl	air
		physical significance of $ \psi ^2$.	4
	(c)	A neutron is trapped in an infinite potential well of wi	dth
		10^{-14} m. Calculate its first energy eigenvalue in eV.	3
7.	(a)	Explain BCS theory of superconductivity. Mention why sup	3er
••	V66.7	conductivity is observed below critical temperature.	[6]
140	(A) 100	·	
49.	661-102	3 P.T	.1.)

http://www.sppuonline.com

(6)	Explain	any one	method	for	synthesis	of	nano-particles.	4
, -				_				

(c) Explain the applications of nano-particles in the field of automobiles. [3]

Or

- 8. (a) Why are the properties of nano-particles different from that of the bulk materials? Explain any two properties of nanoparticles. [6]
 - (b) Explain in brief:

[4]

- (i) Meissner effect
- (ii) Critical magnetic field.
- (c) Explain the applications of superconductors in the field of electronics.

[4956]-102

http://www.sppuonline.com