Total No. of	Questions	:	8]
--------------	------------------	---	----

P1402	

SEAT No.:			
[Total	No. of Pages	:	3

[5221]-41 M.A./M.Sc.

MATHEMATICS

MT - 801: Field Theory

(2008 Pattern) (Semester - IV) (Old)

Time: 3 Hours] [Max. Marks: 80

Instructions to the candidates:

- 1) Attempt any five questions.
- 2) All questions carry equal marks.
- 3) Figures to the right indicate full marks.
- Q1) a) Let $f(x) \in \mathbb{Z}[x]$ be a primitive polynomial. Prove that f(x) is reducible over \mathbb{Q} if and only if f(x) is reducible over \mathbb{Z} .
 - b) Show that the polynomial $x^7 10x^5 + 15x + 5$ is not solvable by radicals over \mathbb{Q} .
 - c) Show that there exists an angle that cannot be trisected by using ruler and compass only. [4]
- Q2) a) Let $f(x) \in \mathbb{Q}[x]$ be a monic irreducible polynomial over \mathbb{Q} of degree p, p is prime. If f(x) has exactly two non real roots in \mathbb{C} , then show that the Galois group of f(x) is isomorphic to S_p , where S_p is a symmetric group on a set with p symbols. [8]
 - b) Show that if a real number x > 0 is constructible, then \sqrt{x} is also constructible. [4]
 - Show that $1 + x + ... + x^{p-1} \in \mathbb{Q}[x]$ is irreducible over \mathbb{Q} , where p is prime. [4]
- Q3) a) Let $f(x) = a_0 + a_1 x + ... + a_n x^n \in \mathbb{Z}[x], n \ge 1$. If there is a prime p such that $p^2 \nmid a_0, p \mid a_1, p \mid a_2, ..., p \mid a_{n-1}, p \nmid a_n$, then show that f(x) is irreducible over \mathbb{Q} .

P.T.O.

- b) Show that the Galois group $G(Q(\alpha)/Q)$, where $\alpha^5 = 1$ and $\alpha \neq 1$, is isomorphic to the cyclic group of order 4. [6]
- c) Find the smallest extension of \mathbb{Q} having a root of $x^4 2 \in \mathbb{Q}[x]$. [4]
- **Q4)** a) Show that if K is a field of characteristic $p \neq 0$, then K is perfect if and only if $K^p = K$, *i.e.*, if and only if every element of K has p^{th} root in K.
 - b) Let F be a field and p(x) be an irreducible polynomial in F[x]. Then show that there exists field extension E of F in which p(x) has a root. [4]
 - c) Let E be an extension field of F. If $a \in E$ has a minimal polynomial of odd degree over F, show that $F(a) = F(a^2)$. [4]
- **Q5)** a) Let E be an extension of field F, and let $u \in E$ be algebraic over F. Let $p(x) \in F(x]$ be a polynomial of the least degree such that p(u) = 0. Prove that
 - i) p(x) is irreducible over F.
 - ii) If $g(x) \in F[x]$ is such that g(u) = 0, then p(x) | g(x).
 - b) Show that the degree of extension of the splitting field of $x^3 2 \in \mathbb{Q}[x)$ is 6.
 - c) Prove that in a finite field, every element can be written as the sum of two squares.[4]
- **Q6)** a) Let E and E' be algebraic closures of a field F. Show that E is isomorphic with E' under an isomorphism that is an identity on F. **[6]**

- b) Let E be the splitting field of $x^n a \in F[x]$. Show that G(E/F), the Galois group, is solvable. [6]
- c) Let E be the splitting field of a polynomial of degree n over a field F. Show that $[E:F] \le n!$. [4]
- **Q7)** a) Prove that any irreducible polynomial f(x) over a field of characteristic 0 has simple roots. Also show that any irreducible polynomial f(x) over a field F of characteristic $p \ne 0$ has multiple roots and only if there exists $g(x) \in F(x]$ such that $f(x) = g(x^p)$. [8]
 - b) Define simple extension. Show that every finite separable extension of a field F is a simple extension. [4]
 - c) Show that the field generated by a root of $x^3 x 1$ over \mathbb{Q} is not normal over \mathbb{Q} .
- **Q8)** a) Show that every finite field F with p^n elements is the splitting field of $x^{p^n} x \in F_p[x]$, where F_p is the subfield of F with p elements. Also show that any two finite fields with p^n elements are isomorphic. [8]
 - b) Show that a finite field F of p^n elements has exactly one subfield with p^m elements for each divisor m of n. [4]
 - c) Show that if $f(x) \in F[x]$ is irreducible over F, then all roots of f(x) have the same multiplicity. [4]

