Total No. o	f Questions	:8]
-------------	--------------------	-----

P1	887	

SEAT No.:	
-----------	--

[Total No. of Pages :3

[4921] - 201 M.A./M.Sc. MATHEMATICS

MT - 601 : General Topology

(2008 Pattern) (Semester -II)

Time: 3 Hours [Max. Marks: 80

Instructions to the candidates:

- 1) Attempt any five questions.
- 2) All questions carry equal marks.
- **Q1)** a) Define standard topology, lower limit topology and K- topology on \mathbb{R} . For each pair of these topologies, explain whether they are comparable, and if so, which is finer. [8]
 - b) Let A be a set. Prove that there is no surjective map $f: A \to P(A)$. [5]
 - c) Let X be any set. Let τ be the discrecte topology and τ' be any other topology on X. Determine with justification whether τ is finer than τ' or not.
- Q2) a) Let X be a topological space. Then prove that [8]
 - i) ϕ and X are closed.
 - ii) Arbitrary intersections of closed sets are closed.
 - iii) Finite unions of closed sets are closed.
 - b) If \mathcal{B} is a basis for the topology of X and \mathcal{C} is a basis for the topology of Y, then prove that the collection $\mathcal{D}\{B \times C \mid B \in \mathcal{B} \text{ and } C \in \mathcal{C}\}$ is a basis for the topology of X×Y. [5]
 - c) Define open map. Let X and Y be topological spaces. Show that the projection map $\pi_1: X \times Y \to X$ is an open map. [3]

- **Q3)** a) Let X and Y be topological spaces; let $f: X \to Y$. Then prove that the following conditions are equivalent: [8]
 - i) f is continuous.
 - ii) For every subset A of X, $f(\overline{A}) \subseteq \overline{f(A)}$.
 - iii) For every closed set B of Y, the set f⁻¹ (B) is closed in X.
 - b) Let X be a space satisfying the T₁ axiom; let A be a subset of X. Then prove that the point x is a limit point of A if and only if every neighborhood of x contains infinitely many points of A. [5]
 - c) Show that a subspace of a Hausdorff space is Hausdorff. [3]
- **Q4)** a) State and prove the sequence lemma. [8]
 - b) State and prove the pasting lemma. [5]
 - c) Prove that every finite point set in a Hausdorff space is closed. [3]
- **Q5)** a) Prove that a finite cartesian product of connected spaces is connected. [8]
 - b) Show that X is Hausdorff if and only if the diagonal $\Delta = \{x \times x : x \in X\}$ is closed in X×X. [5]
 - c) If the sets C and D forms a separation of X, and if Y is a connected subspace of X, then prove that Y lies entirely within either C or D. [3]

Q6) a	a)	Prove that a space X is locally connected if and only if for every set U of X, each component of U is open in X.			
ł	o)		$f: X \to Y$ be a bijective continuous function. If X is compact a ausdorff, then prove that f is a homeomorphism.	and Y [4]	
C	e)	Prov	ve that a subspace of a regular space is regular.	[4]	
Q7) a	a)	Prove that compactness implies limit point compactness, but conversely.			
ł)	Prov	ve that every compact Hausdorff space is normal.	[8]	
Q8) a	a)	State and prove the Tychonoff theorem.		[10]	
ł)	State	2:	[6]	
		i)	the Urysohn lemma,		
		ii)	the Tietze extension theorem.		
		iii)	the Urysohn metrization theorem.		

લ્ક્ષ્માલ્ક