Total No.	of Questions	:	8]	
-----------	--------------	---	----	--

P1394	
1 1377	

		77 07	_
SEAT No.	:		

[Total No. of Pages: 3

[5221]-24 M.A./M.Sc. MATHEMATICS

MT-604: Complex Analysis (2008 Pattern) (Semester-II)

Time: 3 Hours] [Max. Marks: 80

Instructions to the candidates:

- 1) Attempt any five questions.
- 2) Figures to the right indicate full marks.
- **Q1)** a) Prove that the radii of convergence of $\sum_{n=0}^{\infty} a_n z^n$ and $\sum_{n=1}^{\infty} n a_n z^{n-1}$ are same. [6]
 - b) Let G be an open connected subset of \mathbb{C} and let $f : G \to \mathbb{C}$ be differential such that f'(z) = 0 for all z in G. Prove that f is constant. [5]
 - c) Find the radius of convergence of each of the series $\sum_{n=1}^{\infty} 2^n z^n$ and $\sum_{n=1}^{\infty} z^{n!}$.[5]
- **Q2)** a) Let G be an open disc in \mathbb{C} and let $u: G \to \mathbb{R}$ be a harmonic function. Prove that u has a harmonic conjugate. [6]
 - b) Show that a real-valued analytic function is constant. [5]
 - c) Show that a Mobius transformation is a combination of translations, dilations and the inversion. [5]
- **Q3)** a) Let z_1, z_2, z_3, z_4 be four distinct points in \mathbb{C}_{∞} . Prove that the cross ratio (z_1, z_2, z_3, z_4) is a real number if and only if all four points lie on a circle.
 - b) Let G be a region and suppose $f: G \to \mathbb{C}$ is analytic such that f(G) is contained in a subset of a circle. Show that f is constant. [5]
 - c) Prove that a Mobius transformation has ∞ as its only fixed point if and only if it is a translation.

P.T.O.

Q4) a) Let $f: G \to \mathbb{C}$ be analytic and suppose the closure of the disc B(a; r) is a subset of G. Prove that if $\gamma(t) = a + re^{it}$, $0 \le t \le 2\pi$, then [6]

$$f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{w - z} dw \text{ for } |z - a| < r.$$

- b) Let f be analytic in the disc B(a; R) and suppose that γ is a closed rectifiable curve in B(a; r). Prove that $\int_{\gamma} f = 0$. [5]
- c) Evaluate the integrals: [5]

i)
$$\int_{|z|=1} \frac{e^{iz}}{z^2} dz$$

$$ii) \quad \int_{|z|=2} \frac{1}{z^2 + 1} dz$$

- **Q5)** a) State and prove Liouville's theorem. Hence deduce that $\sin z$ is not bounded. [6]
 - b) State and prove the maximum modulus theorem. [5]
 - c) Let f and g be two entire functions such that $fg \equiv 0$. Prove that $f \equiv 0$ or $g \equiv 0$. [5]
- **Q6)** a) Let G be a simply connected region and $f: G \to \mathbb{C}$ be analytic in G. Prove that f has a primitive. [6]
 - b) Let $\gamma(\theta) = \theta e^{i\theta}$ for $0 \le \theta \le 2\pi$ and $\gamma(\theta) = 4\pi \theta$ for $2\pi \le \theta \le 4\pi$. Evaluate $\int_{\gamma} \frac{dz}{z^2 + \pi^2}$. [5]
 - Show that if $f: G \to \mathbb{C}$ is analytic and one-one, then $f'(z) \neq 0$ for any $z \in G$.

Q7) a) State and prove Goursat's theorem.

- **[6]**
- b) Let G be a bounded region and suppose f is continuous on \overline{G} and analytic on G. Show that if |f(z)| = 2 for all z on the boundary of G, then either f is a constant function or f has a zero in G. [5]
- c) State and prove Schwarz's lemma. [5]
- **Q8)** a) Suppose f has an essential singularity at z = a. Prove that for every $\delta > 0$, the set $f[ann(a; 0, \delta)]$ is dense in \mathbb{C} .
 - b) Classify the singularities of $f(z) = \frac{z^2 1}{z(z 1)^2}$. Also, find the residue at each singularity. [5]
 - c) Using residue calculus, show that $\int_0^{\pi} \frac{d\theta}{a + \cos \theta} = \frac{\pi}{\sqrt{a^2 1}}.$ [5]

