D1	002
	000

SEAT No.:	
-----------	--

[Total No. of Pages :3

[4921] - 101 M.A./M.Sc.

MATHEMATICS

MT - 501: Real Analysis

(2008 Pattern) (Semester - I) (Old)

Time: 3 Hours [Max. Marks: 80

Instructions to the candidates:

- 1) Attempt any five questions.
- 2) Figures to the right indicate full marks.
- Q1) a) Define a normed linear space and show that C [a, b] is a normed linear space with supnorm.[6]
 - b) With usual notations prove that

$$||x|| = \frac{1}{3} ||x||_1 & \frac{2}{3} ||x||_{\infty} \text{ defines a norm on } \mathbb{R}^n.$$
 [5]

- c) State and prove Arzela Ascori theorem.
- **Q2)** a) Let I be an interval in \mathbb{R}^n and on $(I) = \frac{n}{\pi} (b_k a_k)$ ε be a collection of finite union of disjoint intervals in \mathbb{R}^n then show that m is a measure on ε .
 - b) If $M_{\mathcal{T}}$ denote $\{A_k \subset \mathbb{R}^n / D(A_k, A) \to 0 \text{ as } k \to \infty \}$ for some sequence A_k in \mathcal{E} then prove that $M_{\mathcal{T}}$ is a ring. [5]
 - c) Let A and B be subsets of a metric space (M, d). Then prove or dis prove. [5]
 - i) $\operatorname{int}(A \cap B) = \operatorname{int}(A) \cap \operatorname{int}(B)$
 - ii) $int(A \cup B) = int(A) \cup int(B)$

[5]

- **Q3)** a) Let $f = \mathbb{R}^n \to \mathbb{R} \cup \{\pm \infty\}$ then show that following statements are equivalent. [6]
 - i) $\{x/f(x)>a\}$ is measurable.
 - ii) $\{x/f(x) \ge a\}$ is measurable for any $a \in \mathbb{R}$.
 - b) If f is a measurable function then prove that |f| is also measurable. [5]
 - c) If $\{f_k\}$ is a sequence of measurable functions then show that $\limsup f_k$ and $\liminf f_k$ are measurable. [5]
- **Q4)** a) State and prove monotone convergence theorem. [6]
 - b) If $f \in \mathcal{L}(\mathbb{R}^n)$ then for measurable sets A and B with B \subseteq A and m (A\B) = 0 then show that $\int_A f \, dm = \int_B f \, dm$. [5]
 - c) If $f, g \in \mathcal{J}(\mathbb{R}^n)$ and $c \in \mathbb{R}$, E is a measurable set of \mathbb{R}^n , then prove that,
 - i) $\int_{E} cf \, dm = c \int_{E} f \, dm.$

ii)
$$\int_{E} (f+g) dm = \int_{E} f dm + \int_{E} g dm$$
. [5]

- Q5) a) Whether a Riemann integrable function is Lebesgue integrable also? Whether converse holds? Justify.[6]
 - b) State and prove Lebesgue dominated convergence theorem. [5]
 - c) State Fatou's lemma and show that strict inequality holds in it. [5]

Q6) a) For $1 \le p < \infty$ prove that $L^{p}(\mu)$ is a linear space. [6]

b) State and prove Holder's inequality. [5]

c) Define counting measure and probability measure. [5]

Q7) a) Define an orthonormal sequence in \mathbb{R}^n and show that

$$\frac{1}{\sqrt{2\pi}}, \frac{\cos nx}{\sqrt{\pi}}, \frac{\sin mx}{\sqrt{\pi}}$$
 is an orthonormal sequence in $\mathcal{L}^2([-\pi, \pi], m)$. [8]

b) Define step functions and show that they are dense in $\mathcal{L}^p(\mu)$ for $1 \le p < \infty$. [8]

Q8) a) State and prove Riesz - Fischer theorem. [8]

b) State and prove Bessel's inequality. [8]

CSEOCOSEO