Total No. o	of Questions	:8]
-------------	--------------	-----

P	1	4	1	1

SEAT No.:	

[Total No. of Pages :3

[5221] - 105 M.A./M.Sc.

MATHEMATICS

MT-505: Ordinary Differential Equations (2013 Pattern) (Semester - I) (Credit System)

Time: 3 Hours [Max. Marks:50

Instructions to the candidates:

- 1) Attempt any five questions.
- 2) Figures to the right indicate full marks.
- Q1) a) If $y_1(x)$ and $y_2(x)$ are two solutions of the equation y'' + P(x)y' + Q(x)y = 0 on [a, b], then prove that they are linearly dependent on this interval if and only if their Wronskian $W(y_1, y_2)$ is identically zero. [5]
 - b) Verify that $y_1 = x$ is one solution of differential equation $x^2y'' + 2xy' 2y = 0$ and find y_2 and the general solution. [3]
 - Show that $y = c_1 e^x + c_2 e^{-x}$ is general solution of y'' y = 0 on any interval. [2]
- **Q2)** a) Discuss the method of variation of parameters to find the solution of second order differential equation with constant coefficients. [5]
 - b) Find the general solution of $y'' + 10y' + 25y = 14e^{-5x}$ by using method of undetermined coefficients. [3]
 - c) Change the independent variable x by $x = e^z$ and solve the differential equation $x^2y'' + 3xy' + 10y = 0$. [2]

- Q3) a) State and prove sturm comparison theorem.
 - b) Show that the zeros of the functions asinx + bcosx and csinx + dcosx are distict and occurs alternately if $ad bc \neq 0$. [3]

[5]

- c) Replace the differential equation $\frac{d^2x}{dt^2} + 4t\frac{dx}{dt} + t^2x = 0$ by an equivalent system of first order equations. [2]
- **Q4)** a) Find the general solution of $(1+x^2)y'' + 2xy' 2y = 0$ in terms of power series in x. [5]
 - b) Determine the nature of the point $x = \infty$ for the equation $x^2y'' + xy' + (x^2 4)y = 0$. [3]
 - c) Locate and classify the singular point on the X axis of $x^2(x^2-1)^2 y'' x(1-x)y' + 2y = 0$ [2]
- Q5) a) Find two independent Frobenius series solutions of the differential equation 4xy'' + 2y' + y = 0. [5]
 - b) Prove that the function $E(x, y) = ax^2 + bxy + cy^2$ is positive definite if and only if a > 0 and $b^2 4ac < 0$. [3]
 - c) Find the critical point of the system

$$\frac{dx}{dt} = 2x - 2y + 10$$

$$\frac{dy}{dt} = 11x - 8y + 49 \tag{2}$$

Q6) a) Solve the system

$$\frac{dx}{dt} = x + y$$

$$\frac{dy}{dt} = 4x - 2y.$$
[5]

- b) Prove that $\log(1+x) = x F(1, 1, 2, -x)$. [3]
- c) State Picard's existence and uniqueness theorem. [2]
- Q7) a) Find the general solution near x = 0 of the hypergeometric equation x(1-x)y'' + [c-(a+b+1)x]y' aby = 0 where a, b and c are constants. [5]
 - b) If m₁ and m₂ are roots of the auxiliary equation of the system

$$\frac{dx}{dt} = a_1 x + b_1 y$$

$$\frac{dy}{dt} = a_2 x + b_2 y$$

which are real, distinct and of same sign then prove that the critical point (0, 0) is a node. [5]

- **Q8)** a) Let F(x, y) be a continuous function that satisfies a Lipschitz condition $|f(x, y_1) f(x, y_2)| < K|y_1 y_2|$ on a strip defined by $a \le x \le b$ and $-\infty < y < \infty$. If (x_0, y_0) is any point of the strip, then prove that the initial value problem y' = f(x, y), $y(x_0) = y_0$ has one and only one solution on the interval $a \le x \le b$.
 - b) Solve the following initial value problem

$$\frac{dy}{dx} = z, \ y(0) = 1$$

$$\frac{dz}{dx} = -y, \ z(0) = 0.$$
 [5]

