Total No	. of Qu	estions	:	8]	
----------	---------	---------	---	----	--

Total No. of Questions	: 8	3]
------------------------	-----	------------

SEAT No.:			
[Total	No. of Pages	:	3

P1906 [4921]-1005 M.A/M.Sc.

MATHEMATICS

MT-505: Ordinary Differential Equations (2013 Pattern) (Semester-I)(Credit System)

Time: 3 Hours] [Max. Marks: 50

Instructions to the candidates:

- Attempt any five questions...
- Figures to the right indicate full marks.
- If $y_1(x)$ and $y_2(x)$ are any two solutions of equation y'' + P(x)y' + Q(x)y = 0**Q1)** a) on[a,b], then prove that their wronskian $W=W(y_1,y_2)$ is either identically zero or never zero on [a,b]. [5]
 - Verify that $y_1 = x$ is one solution of $x^2y'' + xy' y = 0$ and then find another b) solution y₂ and general solution. [3]
 - Find the solution of the initial value problem c)

$$y''-5y'+6y=0$$
, $y(1)=e^2$ and $y'(1)=3e^2$ [2]

- Discuss the method of undetermined coefficients to find the solution of **Q2)** a) second order differential equation with constant coefficients. [5]
 - Find particular solution of differential equation y"+y=secx by variation of b) parameter method. [3]
 - Replace the differential equation $y'' x^2y' xy = 0$ by an equivalent c) system of first order equations. [2]
- *Q3*) a) State and prove sturm seperation theorem. [5]
 - Find the normal form of Bessel's equation $x^2y'' + xy' + (x^2 p^2)y = 0$. [3] b)

c) Locate and classify the singular points on the x-axis of

$$x^{2}(x^{2}-1)^{2}y''-x(1-x)y'+2y=0$$
 [2]

- **Q4)** a) Verify that the equation y''+y'-xy=0 has a three term recursion formula and find its series solutions $y_1(x)$ and $y_2(x)$ such that $y_1(0)=1$, $y_1'(0)=0$ and $y_2(0)=0$, $y_2'(0)=1$ [5]
 - b) Find the indicial equation and its roots of the differential equation

$$x^{3}y'' + (\cos 2x - 1)y' + 2xy = 0.$$
 [3]

- Show that e^x and e^{2x} are linearly independent solutions of y"-3y'+2y=0 on any interval.
- Q5) a) Find two independent Frobenius series solution of the differential equation 4xy'' + 2y' + y = 0. [5]
 - b) Prove that the function E(x,y)=ax²+bxy+cy² is of positive definite if and only if a>0 and b²- 4ac<0.
 [3]

c) Prove that
$$\lim_{b \to \infty} F\left(a, b, a, \frac{x}{b}\right) = e^x$$
 [2]

Q6) a) Find the general solution of the system.

$$\frac{dx}{dt} = 3x - 4y \qquad \qquad \frac{dy}{dt} = x - y$$
 [5]

b) Find the nature and stability properties of critical point (0,0) for

$$\frac{dx}{dt} = -4x - y \qquad \frac{dy}{dt} = x - 2y.$$
 [3]

c) Find the critical points of
$$\frac{d^2x}{dt^2} + \frac{dx}{dt} - (x^3 + x^2 - 2x) = 0.$$
 [2]

Q7) a) If m_1 and m_2 are roots of the auxiliary equation of the system

$$\frac{dx}{dt} = a_1 x + b_1 y$$

$$\frac{dy}{dt} = a_2 x + b_2 y$$

Which are conjugate complex but not pure imaginary, then prove that the critical point (0,0) is a spiral [5]

b) Find the general solution of differential equation

$$x(1-x)y'' + \left(\frac{3}{2} - 2x\right)y' + 2y = 0 \quad \text{near the singular point } x = 0.$$
 [5]

- **Q8)** a) Find the exact solution of initial value problem $y'=y^2$, y(0)=1, starting with $y_0(x)=1$. Apply Picard's method to calculate $y_1(x)$, $y_2(x)$, $y_3(x)$ and compare it with the exact solution [5]
 - b) Show that $f(x,y)=x^2|y|$ satisfies a Lipschitz condition on the rectangle $|x| \le 1$ and $|y| \le 1$ but that $\frac{\partial f}{\partial y}$ fails to exists at many points of this rectangle. [5]

