Total No.	of Questions	:8]	
-----------	--------------	-----	--

Total	MO.	01	V	ues	HOHS	•	O

P1387

SEAT No.:	
-----------	--

[Total No. of Pages :3

[5221] - 12 M.A./M.Sc.

MATHEMATICS

MT-502: Advanced Calculus

(Semester -I) (2008 Pattern)

Time: 3 Hours [Max. Marks: 80

Instructions to the candidates:

- 1) Attempt any five questions:
- 2) Figures to the right indicate full marks.
- **Q1)** a) Let \overline{f} , \overline{g} $S \to \mathbb{R}^m$ where $S \subset \mathbb{R}^n$ be vector fields and $\overline{a} \in \mathbb{R}^n$. Let $\lim_{\overline{x} \to \overline{a}} \overline{f}(\overline{x}) = \overline{b}$ and $\lim_{\overline{x} \to \overline{a}} \overline{g}(\overline{x}) = \overline{c}$ then prove that $\lim_{\overline{x} \to \overline{a}} \left[\overline{f}(\overline{x}) \cdot \overline{g}(\overline{x}) \right] = \overline{b} \cdot \overline{c}$.
 - b) Let $f(x, y) = \frac{xy^2}{x^2 + y^4}$ if $(x, y) \neq (0,0)$ and f(0,0) = 0. Show that all the directional derivatives exist at (0,0) but the function is not continuous at (0,0).
 - Evaluate the directional derivative of $f(x, y, z) = \left(\frac{x}{y}\right)^z$ at (1, 1, 1) in the direction of $2\overline{i} + \overline{j} \overline{k}$. [5]
- **Q2)** a) Let $f: S \to \mathbb{R}$, $S \subset \mathbb{R}^n$ be a scalar field. Assume that the partial derivatives $D, f, ---D_{nf}$ exist in some n-ball $B(\overline{a})$ and are continuous at \overline{a} , then prove that f is differentiable at \overline{a} .
 - b) If a scalar field f is differentiable at \overline{a} then prove that f is continuous at \overline{a} .
 - c) Let z be a function of x and y where $x = u^2 + v^2 2uv$, y = u + v. Compute $(x + y) \frac{\partial z}{\partial x} + (x - y) \frac{\partial z}{\partial v}$. [4]

P.T.O.

- Q3) a) Define Line integral and illustrate it by an example. Also state the basic properties of Line integral.[6]
 - b) Let $\overline{f} = (f_1, ..., f_n)$ be a continuously differentiable vector field on an open set S in \mathbb{R}^n . If \overline{f} is gradient on S, then prove that the partial derivatives of the components of \overline{f} are related by the equation $D_i f_j(\overline{x}) = D_j f_i(\overline{x})$ for i, j = 1, 2, ..., n and every $\overline{x} \in S$. [5]
 - Evaluate the line integral of the vector field $\overline{f}(x, y z) = (y^2 z^2) \overline{i} + 2yz$ $\overline{j} - x^2 \overline{k}$, along the path described by $\overline{\alpha}(t) = t\overline{i} + t^2 \overline{j} + t^3 \overline{k}$, $0 \le t \le 1$. [5]
- **Q4)** a) State and prove first fundamental theorem for line integrals. [8]
 - b) Calculate the work done by constant force with help of line integrals .[4]
 - c) Let \overline{f} be a vector field continuous on an open connected set S in \mathbb{R}^n ? If the Line integral of \overline{f} is zero around every piecewise smooth closed path in S then prove that the line integral of \overline{f} is independent of the path in S.
- **Q5)** a) Let $\overline{f}(x,y) = P(x,y) \overline{i} + Q(x,y) \overline{j}$ be a vector field that is continuously differentiable on an open simply connected set S in the plane. Prove that f is a gradient an S if and only if $\frac{\partial p}{\partial y} = \frac{\partial \theta}{\partial x}$ every where on S. [8]
 - b) Transform the given integrals to one or more iterated integrals in polar Co ordinates $\int_{0}^{1} \left[\int_{0}^{1} f(x, y) dy \right] dx$. [6]
 - c) Determine the volume of an n-dimensional interval. [2]

- Q6) a) State and prove Green's theorem for plane regions bounded by piecewise smooth Jordan curve.[6]
 - b) Make a sketch of the region of integration and evaluate $\iiint_{s} \sqrt{x^2 + y^2} \, dx \, dy \, dz \text{ where S is the solid formed by the upper nappe of the cone } z^2 = x^2 + y^2 \text{ and the plane } Z = 1.$ [5]
 - Evaluate the Line integral using the Green's theorem $\oint_c y^2 dx + x dy$ where C is the square with vertices $(\pm 1, \pm 1)$. [5]
- Q7) a) Define fundamental vector product. Find the fundamental vector product for the surface with explicit representation. What are the singular points of the surface with explicit representation.[6]
 - b) Define the surface integral and explain the terms involved in it. [5]
 - c) Compute the area of the region cut from the plane x + y + z = a by the cylinder $x^2 + y^2 = a^2$. [5]
- **Q8)** a) State and prove Gauss divergence theorem [8]
 - b) Determine the Jacobian matrix and compute the curl and divergence of the following vector field $\overline{F}(x,y,z) = (x^2 + yz)\overline{i} + (y^2 + xz)\overline{j} + (z^2 + xy)\overline{k}$. [6]
 - c) Define simple parametric surface. [2]

& & &