Total No. of Questions : 4]

SEAT No. : [Total No. of Pages : 2

P712

[5315] - 301 T.Y.B.Sc.

MATHEMATICS

MT - 331: Metric Spaces

(2013 Pattern) (Semester - III) (Paper - I) (91113)

Time: 2 Hours] [Max. Marks: 40

Instructions to the candidates:

- 1) All questions are compulsory.
- 2) Figures to the right indicate full marks.
- **Q1)** Attempt any five of the following:

[10]

- a) Does $d(x,y) = |\sin(x+y)|$ define a metric on \mathbb{R} ? Justify.
- b) In a discrete metric space \mathbb{R}_d , find $S_3(2)$ and $S_{\frac{1}{3}}[2]$.
- c) State true or false with justification: If A and B are subsets of \mathbb{R}_u such that $\overline{A} \subset \overline{B}$ then $A \subset B$.
- d) Let $A = \left\{ \frac{1}{n} / n \in \mathbb{N} \right\}$ be a subset of \mathbb{R}_u . Find ∂A (boundary of A).
- e) Let Y=(0,1) be a subspace of \mathbb{R}_u and $A=\left(0,\frac{1}{2}\right]$. State with justification whether A is closed in Y.
- f) Give an example of compact set which is not connected and connected set which is not compact.
- g) Is the set $A = \left\{ \frac{1}{n} / n \in \mathbb{N} \right\} \cup \{0\}$ nowhere dense in \mathbb{R}_u ? Justify.
- Q2) Attempt any two of the following:

[10]

a) In a metric space (X,d), prove that the arbitrary intersection of closed sets in X is closed.

P.T.O.

- b) Let A and B be subsets of a metric space (X,d). Show that $\overline{A \cup B} = \overline{A} \cup \overline{B}$. Is it true that $\overline{A \cap B} = \overline{A} \cap \overline{B}$? Justify.
- c) Let (X,d) be metric space. Show that $|d(x,z)-d(z,y)| \le d(x,y)$ for all $x,y,z \in X$.

Q3) Attempt any two of the following:

[10]

- a) Let $f:(X,d) \to (Y,\rho)$ be a homomorphism. Prove that $F \subset X$ is closed in X if and only if f(F) is closed in Y.
- b) Let (Y,d_Y) be a subspace of complete metric space (X,d). If Y is closed then prove that Y is complete.
- c) Let \mathbb{C}_u be usual metric space with metric $d(z_1, z_2) = |z_1 z_2|; z_1, z_2 \in \mathbb{C}$ (set of complex numbers). Show that \mathbb{C}_u is complete.

Q4) Attempt any one of the following:

- a) i) Prove that a metric space (X,d) is compact if and only if every collection of closed subsets of X having FIP (finite intersection property) has non-empty intersection. [7]
 - ii) Prove that any finite subset of metric space (X,d) is compact. [3]
- b) i) Let (X,d) be metric space and $Y \subset X$ is connected. If $Z \subset X$ is such that $Y \subset Z \subset \overline{Y}$ then prove that Z is connected. Hence prove that \overline{Y} is connected. [5]
 - ii) Let (X,d) be complete metric space and $A \subset X$. Prove that \overline{A} is compact if and only if A is totally bounded. [5]

ζζζ