Total No. of Questions : 4]

P715

SEAT No.:

[Total No. of Pages : 2]

[5315] - 304 T.Y.B.Sc.

MATHEMATICS

MT-334: Group Theory

(2013 Pattern) (Semester - III) (Paper - IV) (91143)

Time: 2 Hours] [Max. Marks: 40

Instructions to the candidates:

- 1) All questions are compulsory.
- 2) Figures to the right indicate full marks.

Q1) Attempt any <u>Five</u> of the following:

[10]

- a) Let m and n be positive integers and consider a subgroup $H = \{mx + ny \mid x, y \in \mathbb{Z}\}$ of a group \mathbb{Z} . Show that H is a cyclic subgroup of \mathbb{Z} .
- b) Find the maximum possible order for an element of S_{15} .
- c) Let μ = (1, 2, 4, 5) (3, 6) in S₆. Find the index of a subgroup $<\mu>$ in S₆.
- d) Let G be a finite group with identity e and let $a \in G$. Show that there exists a positive integer n such that $a^n = e$.
- e) Determine the condition under which the map $\phi: G \to G$ defined by $\phi(x) = x^{-1}, \forall x \in G$ is a group homomorphism?
- f) Show that a group of prime order is a simple group. Also, give an example of a non-cyclic simple group.
- g) Give an example of a group G having no element of finit order > 1, but having a factor group G/H, all of whose elements are of finite order.

P.T.O.

Q2) Attempt any <u>Two</u> of the following:

[10]

- a) Show that a non-empty subset H of a group G is a subgroup of G if and only if $ab^{-1} \in H$, for all $a,b \in H$.
- b) Let $\phi: G \to G'$ be a group homomorphism with kernel H. Prove that $\phi[G]$ is a group and is isomorphic to G/H.
- Show that there is no permutation σ such that $\sigma^{-1}(1,2,3)$ $\sigma = (1,3)(5,7,8)$.

Q3) Attempt any <u>Two</u> of the following:

[10]

- a) Prove that a subgroup of a cyclic group is cyclic.
- b) Prove that every permutation σ of a finite set is a product of disjoint cycles.
- c) Show that the set of $n \times n$ matrices with determinant one form a normal subgroup of $GL(n,\mathbb{R})$.

Q4) Attempt any one of the following:

- a) i) Is the converse of the Lagrange theorem true in general? Justify. [4]
 - ii) Let $\phi: G \to G'$ be a group homomorphism. Prove that ϕ is a one-to-one map if and only if $Ker(\phi) = \{e\}$.

 Also, show that $Ker(\phi)$ is a normal subgroup of G. [6]
- b) i) Show that the binary structure $\langle \mathbb{R}, + \rangle$ is isomorphic to the structure $\langle \mathbb{R}^+, \bullet \rangle$. [4]
 - ii) Prove that the group $\mathbb{Z}_m \times \mathbb{Z}_n$ is cyclic if and only if m and n are relatively prime. [6]

EEE

[5315]-304