Total No. of C	Questions :5]		SEAT No. :					
P597	[52	15]-14	[Total No. of Pages : 4					
	-	-						
	F.Y.B.Sc.							
STATISTICS/STATISTICAL TECHNIQUES Discusses Break shilitar and Break shilitar Distributions								
Discrete Probability and Probability Distributions (2013 Pattern) (Paper - II)								
	(2013 1 atte	rn) (r ape	1 - 11)					
Time 2 Head	I		Man Manka . 90					
Time: 3 Hour	rs _] to the candidates:		[Max. Marks : 80					
	questions are compulsory.							
	ures to the right indicate full i	marks.						
•	of statistical tables and calcu		ved.					
4) Syn	nbols have their usual meaning	gs.						
<i>Q1</i>) Attemp	ot each of the following:							
a) i)								
ii)	ii) Give one real life situation where binomial distribution can be applied.[1							
iii)	State mode of a Poisson di							
iv)	-	nt events w	with $P(A)=0.4$, $P(B)=0.5$, find					
	$P(A' \cap B)$		[1]					
b) Choose the correct alternative for each of the following: [1 each]								
i)	Relative complement of A	with respec	ct to B is given by:					
	A) $A \cap B'$	B)	$A' \cup B$					
	$C)$ $A' \cap B$		$A' \cap B'$					
		— /	11 2					
ii)		g of two fair	coins, the probability of having					
	at least one head is:	D)	0.25					
	A) 0.75	B)	0.25					
	C) 1	D)	0.5					
iii) If X is a degenerate random variable then:								
,	A) $E(X^2) < [E(X)]^2$		$E(X^2) > [E(X)]^2$					
	C) $E(X^2) = [E(X)]^2$	D)	None of these					
iv)	Let X, and X, are two inder	endent Poi	sson variates then the probability					
/	distribution of (X_1+X_2) is:							
	A) Binomial	B)	Poisson					
	C) Geometric	D)	Bernoulli					
			P.T.O.					

c) i) State the multiplication theorem for two events A and B defined on a sample space Ω . [2]

ii) The probability distribution of a discrete random variable X is as follows:

Δ		U		7
P(X=	=x	0.25	0.40	0.35
Find	E(x)			

iii) Define binomial distribution.

[2]

iv) Determine K such that the following function is a probability mass function (p.m.f)

$$P(X=x) = kx ; x=1, 2, 3, 4.$$

=0; otherwise [2]

Q2) Attempt any four of the following:

[4 each]

- a) An integer between 1 and 100 (both inclusive) is selected at random. Find the probability of selecting a perfect square. Also find the probability of selecting a perfect cube, if all integers are equally likely.
- b) Let X \to B (n=6, p= $\frac{1}{4}$)

Find i)
$$P(X=3)$$

ii)
$$P(X \le 3)$$

c) X and Y are random variables with joint probability mass function partly shown in the following table. Find the missing probabilities.

Y	0	1	Total
0	$\frac{1}{6}$	-	-
1	-	-	$\frac{2}{3}$
Total	-	$\frac{1}{2}$	1

d) Let X be a descrete random variable with probability mass function,

$$P(X=x) = \frac{x}{15}$$
, for $x=1, 2, 3, 4, 5$.
= 0, otherwise

Find E(X) and Var(2X-3)

.

[5315]-14

- e) Given A and B are two independent events defined on Ω , prove that A' and B' are independent.
- f) Explain the following terms with one illustration each:
 - i) mutually exclusive events
 - ii) exhaustive events.

Q3) Attempt any Four of the following:

[4 each]

[6]

- a) Obtain moment generating function (m.g.f) of Poisson distribution with parameter 'm'.
- b) Give the classical definition of probability. State its limitations.
- c) A bag contains 4 white and 2 black balls. Another bag contains 3 white and 3 black balls. One ball is drawn from each bag at random. Find the probability that they are of different colours.
- d) The probability mass function (p.m.f) of a random variable X is given by,

$$P(X=x) = \frac{k2^{x}}{x!},$$
 $x=0,1, 2, 3,..., k > 0$
= 0, otherwise

Find the value of K and $P(X \ge 1)$.

- e) Let $X \sim B(n,p)$. Find mean of X.
- f) For a bivariate discrete r.v.(X,Y):

$$\sigma_X^2 = 9$$
, $\sigma_Y^2 = 4$, $Cov(X,Y) = 4$.

Find i) Var (2X-3Y)

ii) Cov (2X, 3Y)

Q4) Attempt any Two of the following:

- a) i) State and prove Baye's theorem
 - ii) Define rth order factorial moment of a discrete r.v. [2]
- b) The joint probability distribution of X and Y is,

Y	1	2	3
X			
0	0.1	0.05	0.15
1	0.05	0.1	0.15
2	0.15	0.15	0.1

Find i)
$$E(Y/X=1)$$
 [4]
ii) $V(Y/X=1)$

c) State and prove binomial approximation to hypergeometric distribution.[8]

[5315]-14

[8]

d) The probability distribution of r.v.X is given by,

Tile pr	Journing	GID CIT	oution of	1. 1. 1.2
X	0	1	2	3
P(x)	$\frac{1}{6}$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{6}$

Calculate coefficient of skewness γ_1 and comment on the nature of the distribution.

Q5) Attempt any One of the following:

a) i) A r.v. X has discrete uniform distribution with p.m.f, [6]

$$P(x) = \frac{1}{n+1}$$
; $x = 0,1,....n$.
=0; otherwise

Find mean and variance of X.

ii) Define Bernoulli distribution with parameter p. [2]

iii) The joint p.m.f of (X,Y) is as given below: [8]

X	0	1	2
1	0.1	0.2	0.2
2	0.1	0.3	0.1

Find correlation coefficient between X and Y

b) i) Let X be a discrete r.v. with p.m.f $P(x) = pq^{x}$, $x=0, 1, 2, \dots, 0
<math>= 0$, otherwise

Find E(X) and Var(X), also show that E(X) < Var(X) [8]

ii) Given that $P(A_1)=P(A_2)=P(A_3)=\frac{1}{3}$ and $P(B/A_1)=\frac{2}{7}$ $P(B/A_2)=\frac{4}{9}$,

$$P(B/A_3) = \frac{1}{5}$$
, find $P(A_2/B)$. [4]

iii) A box of 20 mangoes contain 4 rotten mangoes. Two mangoes are drawn at random without replacement from this box. Obtain the probability distribution of the number of rotten mangoes in the sample. [4]

