Total No. of Questions : 5]		SEAT No. :
P511	[4917]-114	[Total No. of Pages : 4
	F. Y. B. Sc.	

STATISTICS/STATISTICAL TECHNIQUES **Discrete Probability and Probability Distributions** (2013 Pattern) (Paper - II)

Time: 3 Hours] [Max. Marks: 80

Instructions to the candidates:

- All questions are compulsory.
- 2) Figures to the right indicate full marks.
- Use of Statistical tables and calculator is allowed. 3)
- Symbols have their usual meanings. 4)
- **Q1)** A) Attempt each of the following:
 - Give one real life situation where geometric distribution can be applied. [1]
 - Write the sample space of a random experiment of tossing 3 b)
 - State moment generating function (m.g.f.) of a binomial distribution c) with parameters n and p. [1]
 - If A and B are independent events with P(A)=0.6 and P(B)=0.5, find $P(A \cap B)$. [1]
 - Choose correct alternative for the following: B)

[1 each]

- If $P(A \cap B) = 0$, then the two events A and B are a)
 - i) Exhaustive events
- ii) Dependent events
- Mutually exclusive events iv) Independent events
- If X and Y are independent random variables with m.g.f. $M_v(t)$ and $M_{v}(t)$ respectively then, $M_{v+v}(t)$ is:
 - $M_{v}(t) + M_{v}(t)$ i)
- ii) $M_{\rm v}(t) M_{\rm v}(t)$
- iii) $M_x(t)/M_y(t)$
- iv) $M_{\chi}(t) * M_{\gamma}(t)$

P.T.O.

	c)	If $X \sim P(m)$ then variance of X is						
		i)	2 <i>m</i>			ii)	m	
		iii)	4 <i>m</i>			iv)	0	
	d)	If X and Y are two random variables with means $E(X)=2$ and $E(Y)=3$ then $E(2X-3Y)$ is:						
		i)	-5			ii)	-1	
		iii)	13			iv)	5	
C)	a)	If K	arl Peai	rson's o	coefficie	nt of	correlation be	etween X and Y
		$(\rho(x))$	(x,y) is 0	.6, then	find ρ	$\frac{x+2}{-5}$	$,\frac{y-3}{2}$).	[2]
	b)	Let 2	$X \sim B \left(n \right)$	=10, <i>p</i> =	$\left(\frac{1}{3}\right)$ then s	state t	he mode of X.	[2]
	c)		a probab			n of X	, obtain cumul	ative distribution [2]
		x	-1	0	1			
		p(x)	1/2	1/4	1/4			
	d)	State	Baye's	theore	n.			[2]
Q2) Atte	empt <u>a</u>	any fou	<u>ır</u> of the	followi	ng:			[4 each]
a)	Exp	olain th	ne follow	ving terr	ns with c	ne illı	ustration each.	
	i)	Mutually exclusive events.						
	ii)	Sure	event.					
b)		Let X and Y are two independent discrete r.v's. show that $E(XY)=E(X)\cdot E(Y)$						
c)	If A	A and	B are m	nutually	exclusiv	ve and	d non empty e	vents defined on
	san	sample space Ω , show that $P(A A \cup B) = \frac{P(A)}{P(A) + P(B)}$.						
d)	For	a Pois	sson dis	tributio	n with P	(X=2)	=P(X=3), com	pute $P(X \ge 1)$.
[4917]-	114				2			

- e) If P(A)=0.4, P(B)=0.6 and $P(A \cup B)=0.8$, find
 - i) $P(A \cap B)$

- ii) $P(A' \cap B)$
- f) Define the following terms:
 - i) Pairwise independence of three events.
 - ii) Partition of the sample space.

Q3) Attempt any four of the following:

[4 each]

- a) Give the classical definition of probability. State its limitations.
- b) Define a discrete uniform distribution with parameter 'n'. Find its mean and variance.
- c) Let $X \sim B(n,p)$. State the c.g.f. of X, hence find mean of X.
- d) The probability mass function (p.m.f.) of a r.v. X is given by,

$$P(X=x) = K {}^{5}C_{x}$$
 ; $x=0,1,2,3,4,5$.
 $K>0$
= 0 ; otherwise.

Find the value of K.

- e) A committee of 4 persons has to be formed out of 5 graduate and 4 non graduate persons. Find the probability that the committee consists of at most 2 non graduate persons.
- f) State and prove multiplication theorem of probability for two events A and B defined on sample space Ω .

Q4) Attempt <u>any two</u> of the following:

a) The joint probability distribution of (X,Y) is given below:

X Y	0	1	2	3
-1	0.05	0.05	0.075	0.075
0	0.10	0.25	0.075	0.075
1	0.10	0.05	0.05	0.05

[4917]-114

Find i) E(Y|X=0) and [4]

ii)
$$V(Y|X=0)$$
. [4]

- b) i) Obtain variance of a linear combination of two variables X and Y; V(aX + bY).
 - ii) What do you mean by a deterministic model? State one example of it. [2]
- c) State and prove binomial approximation to hypergeometric distribution. [8]
- d) For a certain probability distribution if mean = 5, Variance = 2, coefficient of skewness = +1 and coefficient of kurtosis = +1, find first four raw moments of the distribution.

Q5) Attempt any one of the following:

a) i) The joint p.m.f. of (X,Y) is given by,

$$P(x,y) = c(x^2+y^2)$$
; $c>0, x = -1,1.$
 $y = -2,2.$

= 0 ;otherwise.

Obtain I) c

- II) Marginal p.m.f's of X and Y
- III) Are X and Y independent? Justify. [8]
- ii) Let X and Y be two independent Poisson random variables with mean 3 and 2 respectively. Find: [8]
 - I) P(X=4|X+Y=5) II) E(X|X+Y=5)
- b) i) If the probability that a certain test yields a positive reaction is equal to 0.4. What is the probability that less than 5 negative reactions occur before the first positive one? [5]
 - ii) State the p.m.f. of hypergeometric distribution. Find mean and variance of the distribution. [8]
 - iii) What is the probability that a non-leap year should have fifty three Sundays? [3]

[4917]-114