Total No. of Questions—5]

[Total No. of Printed Pages-4

Seat	
No.	

[5216]-6

F.Y.B.Sc. (Computer Science) EXAMINATION, 2017 ELECTRONICS SCIENCE

Paper II

ELE-102: Principles of Digital Electronics
(2013 PATTERN)

Time: Three Hours

Maximum Marks: 80

N.B. :— (i) All questions are compulsory.

- (ii) Neat diagram must be drawn wherever necessary.
- (iii) Figures to the right indicate full marks.
- **1.** Attempt all of the following:

 $[8 \times 2 = 16]$

- (a) Differentiate between weighted and unweighted code.
- (b) Define the term minterm.
- (c) Draw the logic diagram for half adder.
- (d) For a decoder having 32 states what will be the number of control lines required.
- (e) Mention why synchronous counters are faster than asynchronous counters.
- (f) Draw the symbol of a tristate inverter and give its truth table.
- (g) Differentiate between encoder and decoder.
- (h) What is a ring counter?

P.T.O.

2. Attempt any four of the following:

 $[4 \times 4 = 16]$

- (a) Perform the following:
 - (i) $(11101)_{\text{Gray}} = (?)_2$
 - (ii) $(479)_{10} = (?)_{BCD}$
- (b) Simplify the given expression using rules of boolean algebra:

$$Y = (\overline{A} + B + C) (A + \overline{B} + C)$$

- (c) With a neat logic diagram explain the working of a full subtractor.
- (d) Explain the working of 4: 1 multiplexer using NAND gates.
- (e) Show the connections required to convert JK Flip-Flop to D Flip Flop and T Flip-Flop. Write the truth table for the same.
- (f) With suitable diagram explain the working of CMOS NOT gate.
- **3.** Attempt any four of the following:

 $[4 \times 4 = 16]$

- (a) Draw the symbol and give the truth table for :
 - (i) 2-input AND gate
 - (ii) 2-input OR gate
- (b) Construct NAND gate and NOT gate using NOR gates.

[5216]-6

- (c) With neat diagram explain the working of 4-bit universal addersubtractor.
- (d) Draw logic diagram for Hex to Binary conversion.
- (e) Show the connections of IC7490 for MOD 7 and MOD 3 operation.
- (f) Define the parameters for a logic family:
 - (i) Fan in
 - (ii) Switching speed
 - (iii) Logic levels
 - (iv) Propagation delay.
- **4.** Attempt any four of the following:

 $[4 \times 4 = 16]$

- (a) Write a short note on Alphanumeric codes.
- (b) Simplify the given expression using K-map. Draw the simplified diagram:

$$Y = \overline{A}\overline{B}\overline{C} + \overline{A}B\overline{C} + AB\overline{C} + A\overline{B}\overline{C} + \overline{A}BC + ABC$$

- (c) Explain with block diagram the working of ALU.
- (d) What are the different types of 7 segment displays? Explain the working of each type.
- (e) With neat logic diagram explain the working of 3-bit parallel in parallel out shift register.
- (f) Write a short note on logic families.

[5216]-6 3 P.T.O.

- **5.** Attempt any *two* of the following: $[2\times8=16]$
 - (a) (i) Explain the working of 3-bit parity generator with suitable diagram.
 - (ii) Perform $(45)_{10}$ $(23)_{10}$ using 2's complement method.
 - (b) Explain the working of 3-bit synchronous up counter with suitable logic diagram. Draw the timing diagram for the same.
 - (c) (i) With neat diagram explain the working of 3×4 matrix keyboard encoder.
 - (ii) State and prove the De-Morgan's theorems.

[5216]-6 4