Total No. of Questions-5]

Seat	
No.	

[Total No. of Printed Pages-8
[5116]-7
F.Y. B.Sc. (Computer Science) EXAMINATION, 2017 STATISTICS

Paper I
 (Statistical Methods-I)
 (2013 PATTERN)

Time : Three Hours Maximum Marks : 80
N.B. :- (i) All questions are compulsory
(ii) Figures to the right indicate full marks.
(iii) Use of non-programmable, scientific calculator and statistical tables is allowed.
(iv) Symbols have their usual meaning unless otherwise stated.

1. (A) Fill in the blanks : [1 each]
(i) For a negatively skewed distribution, the relationship between mean, media and mode is \qquad
(ii) The mean of Poisson distribution is \qquad its variance.
(iii) Limits of multiple correlation coefficeint $\mathrm{R}_{1.23}$ are
\qquad
(iv) In Time series, the component having period of oscillation less than one year is called \qquad
P.T.O.
(B) Select the most appropriate option for each of the following :
(i) For deciding most favorite actor, which is the most appropriate average ?
(a) mean
(b) median
(c) mode
(d) upper quartile
(ii) Variance is a measure of :
(a) dispersion
(b) central tendency
(c) kurtosis
(d) skewness
(iii) The probability distribution of a discrete random variable X is :

$\boldsymbol{x}_{\boldsymbol{i}}$	$\mathbf{P}\left(\mathbf{X}=\boldsymbol{x}_{\boldsymbol{i}}\right)$
1	0.1
2	0.3
3	0.4
4	0.2

What is $\mathrm{P}(2 \leq x \leq 3)$?
(a) 0.7
(b) 0.3
(c) 0.4
(d) 1
(iv) The number of observations belonging to a class intervals is called as :
(a) cumulative frequency
(b) class width
(c) class mark
(d) frequency
(C) Attempt each of the following :
(i) State $\mathrm{AR}(1)$ model.
(ii) If $b_{y x}=0.7$ and $b_{x y}=0.9$, find the value of r.
(iii) State recurrence relation for the Binomial distribution.
(iv) If X follows discrete uniform distribution with $n=7$, find the variance of X .
2. Attempt any four of the following :
(a) Discuss median as a measure of central tendency. State merits and demerits of median.
(b) The daily expenditure of 100 people is as follows :

Expenditure	Number	of Persons
$20-30$	14	
$30-40$	-	
$40-50$	27	
$50-60$	-	
$60-70$	15	

If the mode of the distribution is 43 , find the missing frequencies.
(c) Describe the procedure to plot less than ogive curve for a grouped frequency distribution.
(d) Consider the following data related to income in two villages :

Village A
 Village B

Number of persons
70
Mean income (Rs.) 280
Variance of income 144 60
(i) In which village the average income is more? Justify your answer.
(ii) In which village the variation in income is more ? Justify your answer.
(e) Define quartiles. Describe procedure to compute third quartile for a grouped frequency distribution.
(f) The profits (in lakhs of Rs.) of 15 companies for financial year 2015-16 are as follows :
$24,21,35,48,42,27,52,43,40,47,55,25,50,33,44$. Draw a stem and leaf chart.
3. Attempt any four of the following :
(a) Explain the terms exclusive class interval and coefficient of variation.
(b) Consider the following data related to marks of students in division A and division B in statistics :
Division A
$\mathrm{Q}_{1}=23$
$\mathrm{Q}_{2}=52$
$\mathrm{Q}_{3}=78$
Division B
$\mathrm{Q}_{1}=34$
$\mathrm{Q}_{2}=52$
$\mathrm{Q}_{3}=68$

Determine marks of which division are more skewed ? Justify your answer.
(c) Explain concept of kurtosis. State its types with help of frequency curve.
(d) The standard deviation of a distribution is 5 . What should be the value of fourth central moment so that distribution will be (i) mesokurtic (ii) leptokurtic ?
(e) Consider the function $\mathrm{P}(x)=\mathrm{K}\left(x^{2}+4\right), x=0,1,2,3$: (i) Find the value of K for which $\mathrm{P}(x)$ will be valid p.m.f. (ii) Find distribution function of X .
(iii) Find the value of mode of X .
(f) Describe in brief a Binomial experiment. State probability mass function (p.m.f.) of Binomial distribution. Also state expression for its mean.
4. Attempt any two of the following :
(A) (i) What is regression ? State any two properties of regression coefficients.
(ii) For a trivariate data, $\sigma_{1}=4, \sigma_{2}=8, \sigma_{3}=7, r_{12}=0.45$, $r_{13}=0.55, r_{23}=0.65$. Find the values of $b_{12.3}$ and $r_{23.1}$.
(B) (i) Explain in brief the procedure of fitting line of regression of X on Y for a bivariate data by method of least squares.
(ii) The following is the distribution function of a discrete random variable X :

\mathbf{X}	$\mathbf{F}(\boldsymbol{x})$
0	0.05
1	0.20
2	0.40
3	0.90
4	0.99
5	1.0

(1) Find p.m.f. of X
(2) Find $\mathrm{P}(\mathrm{X}>3)$
(3) Find $\mathrm{P}(1<\mathrm{X} \leq 5)$.
(C) (i) Explain concept of partial correlation in a trivariate data with help of an example.
(ii) Let X follows Poisson distribution with parameter 4 and Y follows Poisson distribution with parameter 6. X and Y are independent.

Find the distribution of $(\mathrm{X}+\mathrm{Y})$. Also find $\mathrm{P}[(\mathrm{X}=5) /$ $(\mathrm{X}+\mathrm{Y})=9]$.
(D) (i) If the probability that a certain test gives a positive reaction is 0.4 . What is the probability that less than 3 negative reactions occur before the first positive reaction.
(ii) Consider the following calculations for a bivariate data of size 10 :
$\Sigma x=165 \quad \Sigma y=178 \quad \Sigma x^{2}=3591$
$\Sigma y^{2}=3788$
$\Sigma x y=3606$
Find the correlation coefficient between X and Y and interpret its value.
5. Attempt any one of the following : [16 each]
(A) (i) Describe the procedure of fitting equation $y=a x^{b}$ for a bivariate data.
(ii) In the regression analysis the equation of two lines of regression are $2 \mathrm{X}+3 \mathrm{Y}=8$ and $2 \mathrm{Y}+\mathrm{X}=5$ and the variance of $\mathrm{X}=4$.

Find :
(1) Mean values of X and Y
(2) Coefficient of correlation between X and Y
(3) The standard deviation of Y .
(B) (i) A teacher of mathematics wants to determine the relationship between grades in the final examination and two internal tests given during the semester. Let $\mathrm{X}_{1}, \mathrm{X}_{2}$ and X_{3} denote the grades of a student in the final examination, first test and second test respectively. He obtained the following computation for a total of 120 students :

$$
\begin{array}{lll}
\overline{\mathrm{X}}_{1}=7.4 & \overline{\mathrm{X}}_{2}=6.8 & \overline{\mathrm{X}}_{3}=7.0 \\
\sigma_{1}=0.9 & \sigma_{2}=1 & \sigma_{3}=0.8 \\
r_{12}=0.60 & r_{13}=0.70 & r_{23}=0.65
\end{array}
$$

(1) Find the equation of plane of regression of X_{1} on X_{2} and X_{3}.
(2) Estimate X_{1} when $X_{2}=6$ and $X_{3}=6.5$.
(ii) Estimate trend value using method of moving averages with $m=4$ for the following data on the number of students studying in a college during years 2001 to 2010 :
Year Number of Students
20013320

20023170
20033570
20043920
20054020
20064050
20074100
20084270
20094050
20104380

