Total No. of Questions—5]

[Total No. of Printed Pages—4

Seat	
No.	

[5116]-4

F.Y. B.Sc. (Computer Science) EXAMINATION, 2017 MATHEMATICS

Paper II

(MTC-102: Algebra and Calculus)

(2013 **PATTERN**)

Time: Three Hours

Maximum Marks: 80

N.B. := (i) All questions are compulsory.

- (ii) Figures to the right indicate full marks.
- (iii) Neat diagrams must be drawn wherever necessary.
- (iv) Use of single memory, non-programmable, scientific calculator is allowed.
- 1. Attempt any eight of the following:

[16]

- (1) Give an example of a relation on a set $A = \{1, 2, 3\}$ which is reflexive, symmetric but not transitive.
- (2) If a, b and c are integers such that $a \mid b$, $b \mid c$, then prove that $a \mid c$.
- (3) Define monoid. Give an example.
- (4) Examine the continuity of the function f(x) at x = 0 where :

$$f(x) = \frac{|x|}{x}.$$

P.T.O.

- (5) If $y = (ax + b)^m$, then find the *n*th derivative of y.
- (6) State Maclaurin's theorem with Lagrange's form of remainder.
- (7) Which elements of (Z_6, \bullet) satisfy $x^2 = x$?
- (8) State first principle of mathematical induction.
- (9) Draw the diagraph of the relation : $R = \{(1, 2), (3, 4), (4, 2), (1, 4)\} \text{ on the set } A = \{1, 2, 3, 4\}.$
- (10) Determine the values of 'a' for which the following system has infinitely many solutions:

$$(a - 3)x + y = 0$$

 $x + (a - 3)y = 0.$

- **2.** Attempt any four of the following: [16]
 - (1) If R is the relation of set A = $\{1, 2, 3, 4\}$ defined as xRy if and only if $x \le y$, then draw diagraph of relation R and write the matrix of R.
 - (2) Let $a, b, c, d \in \mathbf{Z}$. If $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$, then prove that :
 - $(i) \qquad (a + c) \equiv (b + d) \pmod{n}$
 - (ii) $ac \equiv bd \pmod{n}$.
 - (3) Find the remainder of 7^{483} when divided by 13.
 - (4) If p is prime and a, b are integers such that $p \mid ab$, then prove that $p \mid a$ or $p \mid b$.
 - (5) Let **Z** be the set of all integers. Given a, $b \in \mathbf{Z}$, define $a \sim b$ if a b is an even integer. Then prove that \sim is an equivalence relation.

[5116]-4

(6) Determine whether the given permutation is even or odd. Also find the order of σ and σ^{-1} .

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ & & & & & & \\ 2 & 3 & 4 & 5 & 1 & 6 & 7 & 9 & 8 \end{pmatrix}$$

- **3.** Attempt any *two* of the following: [16]
 - (1) Using Warshall's algorithm obtain transitive closure of relation :

 $R = \{(1, 2), (2, 2), (2, 4), (3, 2), (3, 4), (4, 1)\} \text{ on the set}$ $A = \{1, 2, 3, 4\}.$

- (2) Let $G = \mathbf{Z}$, the set of integers. Define the binary operation * as, a * b = a + b 2, $a, b \in \mathbf{Z}$. Show that $\langle \mathbf{Z}, * \rangle$ is an abelian group.
- (3) Show that 4999 and 1109 are relatively prime. Also find m & n such that 4999m + 1109n = 1.
- **4.** Attempt any four of the following: [16]
 - (1) Verify Rolle's theorem for the function:

$$f(x) = \frac{\sin x}{e^x}$$
 on $[0, \pi]$.

- (2) Expand $\sin x$ in ascending power of $(x \pi/2)$.
- (3) Solve the following system of linear equations by Gauss elimination method:

$$3x + y + 2z = 3$$

 $2x - 3y - z = -3$
 $x + 2y + z = 4$.

[5116]-4 3 P.T.O.

(4) Discuss the continuity of f(x) at x = 0 where :

$$f(x) = \frac{e^{1/x} - 1}{e^{1/x} + 1}, \qquad x \neq 0$$

$$= 0, \qquad x = 0$$

- (5) Find the *n*th derivative of $y = \frac{2x+3}{x^2+3x+2}$.
- (6) Find column rank of the following matrix:

$$A = \begin{bmatrix} 2 & -2 & 0 & 6 \\ 4 & 2 & 0 & 2 \\ & & & \\ 1 & -1 & 0 & 3 \\ 1 & -2 & 1 & 2 \end{bmatrix}.$$

- **5.** Attempt any *two* of the following: [16]
 - (1) State Leibnitz's theorem and prove that if $y = (\sin^{-1} x)^2$, then:

$$(1 - x^2)y_{n + 2} - (2n + 1)xy_{n + 1} - n^2y_n = 0.$$

(2) Solve by LU decomposition method:

$$2x + 3y + z = 9$$

 $x + 2y + 3z = 6$
 $3x + y + 2z = 8$.

(3) (a) State and prove Cauchy's mean value theorem.

4

(b) If in the Cauchy's mean value theorem $f(x) = e^x$, $g(x) = e^{-x}$ show that c is arithmetic mean between a & b.

[5116]-4