Seat No.	

[5116]-4
F.Y. B.Sc. (Computer Science) EXAMINATION, 2017

MATHEMATICS
Paper II
(MTC-102 : Algebra and Calculus)
(2013 PATTERN)
Time : Three Hours Maximum Marks : 80
N.B. :- (i) All questions are compulsory.
(ii) Figures to the right indicate full marks.
(iii) Neat diagrams must be drawn wherever necessary.
(iv) Use of single memory, non-programmable, scientific calculator is allowed.

1. Attempt any eight of the following :
(1) Give an example of a relation on a set $\mathrm{A}=\{1,2,3\}$ which is reflexive, symmetric but not transitive.
(2) If a, b and c are integers such that $a|b, b| c$, then prove that $a \mid c$.
(3) Define monoid. Give an example.
(4) Examine the continuity of the function $f(x)$ at $x=0$ where :

$$
f(x)=\frac{|x|}{x} .
$$

P.T.O.
(5) If $y=(a x+b)^{m}$, then find the nth derivative of y.
(6) State Maclaurin's theorem with Lagrange's form of remainder.
(7) Which elements of $\left(\mathrm{Z}_{6}, \bullet\right)$ satisfy $x^{2}=x$?
(8) State first principle of mathematical induction.
(9) Draw the diagraph of the relation : $R=\{(1,2),(3,4),(4,2),(1,4)\}$ on the set $A=\{1,2,3,4\}$.
(10) Determine the values of ' a ' for which the following system has infinitely many solutions :

$$
\begin{aligned}
& (a-3) x+y=0 \\
& x+(a-3) y=0
\end{aligned}
$$

2. Attempt any four of the following :
(1) If R is the relation of set $\mathrm{A}=\{1,2,3,4\}$ defined as $x \mathrm{Ry}$ if and only if $x \leq y$, then draw diagraph of relation R and write the matrix of R.
(2) Let $a, b, c, d \in \mathbf{Z}$. If $a \equiv b(\bmod n)$ and $c \equiv d(\bmod n)$, then prove that :
(i) $(a+c) \equiv(b+d)(\bmod n)$
(ii) $a c \equiv b d(\bmod n)$.
(3) Find the remainder of 7^{483} when divided by 13 .
(4) If p is prime and a, b are integers such that $p \mid a b$, then prove that $p \mid a$ or $p \mid b$.
(5) Let \mathbf{Z} be the set of all integers. Given $a, b \in \mathbf{Z}$, define $a \sim b$ if $a-b$ is an even integer. Then prove that \sim is an equivalence relation.
(6) Determine whether the given permutation is even or odd. Also find the order of σ and σ^{-1}.

$$
\sigma=\left(\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
2 & 3 & 4 & 5 & 1 & 6 & 7 & 9 & 8
\end{array}\right)
$$

3. Attempt any two of the following :
(1) Using Warshall's algorithm obtain transitive closure of relation :
$\mathrm{R}=\{(1,2),(2,2),(2,4),(3,2),(3,4),(4,1)\}$ on the set $\mathrm{A}=\{1,2,3,4\}$.
(2) Let $G=\mathbf{Z}$, the set of integers. Define the binary operation * as, $a * b=a+b-2, a, b \in \mathbf{Z}$.

Show that $\langle\mathbf{Z}, *\rangle$ is an abelian group.
(3) Show that 4999 and 1109 are relatively prime. Also find $m \& n$ such that $4999 m+1109 n=1$.
4. Attempt any four of the following :
(1) Verify Rolle's theorem for the function :

$$
f(x)=\frac{\sin x}{e^{x}} \text { on }[0, \pi]
$$

(2) Expand $\sin x$ in ascending power of $(x-\pi / 2)$.
(3) Solve the following system of linear equations by Gauss elimination method :

$$
\begin{aligned}
3 x+y+2 z & =3 \\
2 x-3 y-z & =-3 \\
x+2 y+z & =4
\end{aligned}
$$

(4) Discuss the continuity of $f(x)$ at $x=0$ where :

$$
\begin{aligned}
f(x) & =\frac{e^{1 / x}-1}{e^{1 / x}+1}, & & x \neq 0 \\
& =0, & x & =0
\end{aligned}
$$

(5) Find the nth derivative of $y=\frac{2 x+3}{x^{2}+3 x+2}$.
(6) Find column rank of the following matrix :

$$
A=\left[\begin{array}{cccc}
2 & -2 & 0 & 6 \\
4 & 2 & 0 & 2 \\
1 & -1 & 0 & 3 \\
1 & -2 & 1 & 2
\end{array}\right]
$$

5. Attempt any two of the following :
(1) State Leibnitz's theorem and prove that if $y=\left(\sin ^{-1} x\right)^{2}$, then :
$\left(1-x^{2}\right) y_{n}+2-(2 n+1) x y_{n}+1-n^{2} y_{n}=0$.
(2) Solve by LU decomposition method :

$$
\begin{aligned}
& 2 x+3 y+z=9 \\
& x+2 y+3 z=6 \\
& 3 x+y+2 z=8
\end{aligned}
$$

(3) (a) State and prove Cauchy's mean value theorem.
(b) If in the Cauchy's mean value theorem $f(x)=e^{x}$, $g(x)=e^{-x}$ show that c is arithmetic mean between $a \& b$.

