Total No. of Questions : 6]

P683

[Total No. of Pages : 3]

[5217]-4

F.Y.B.Sc. (Biotechnology)

MATHEMATICS AND STATISTICS

Bb-104: Mathematical and Statistical Methods for Biologists (2013 Pattern)

Time: 3 Hours [Max. Marks: 80

Instructions to the candidates:

- 1) All questions are compulsory.
- 2) Figures to the right indicate full marks.
- 3) Use of non-programmable scientific calculator is allowed.
- 4) Solve each section on separate answer paper.

SECTION-I

Q1) Attempt each of the following.

 $[4 \times 2 = 8]$

- a) Find eigenvalues of $A = \begin{bmatrix} 2 & 1 \\ 0 & 3 \end{bmatrix}$. Hence write eigenvalues of A^3 .
- b) Check for exactness, the following differential equation: $(3x^2y 6x) dx + (x^3+2y) dy = 0$
- c) Find real and imaginary parts of $Z = \frac{i^4 + i^2 + 1}{i^7 + i^3}$.
- d) Use E-definition to prove that $\lim_{n\to\infty} \frac{1}{n+1} = 0$.

Q2) Attempt any four of the following.

 $[4 \times 4 = 16]$

- a) Find rank of the following matrix. $A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 3 & 4 & 5 & 2 \\ 2 & 3 & 4 & 0 \end{bmatrix}$
- b) Find the stationary point and determine the nature of the following function. $f(x, y) = x^2 + 3xy + y^2$.
- c) Test the convergence of the series $\sum_{n=1}^{\infty} \frac{n^n}{e^n}$.
- d) Find integrating factor of the following differential equation and hence find its solution. (1 + xy)y dx + (1-xy)x dy = 0.

P.T.O.

e) Solve the following system of linear equations.

$$2x + 4y + z = 3$$

 $3x + 2y - 2z = -2$
 $x - y + z = 6$

f) Check whether the following vectors are linearly dependent in IR^4 . $\{(1, 0, 1, 2), (0, 1, 1, 2), (1, 1, 1, 3)\}$

Q3) Attempt any two of the following.

$$[2 \times 8 = 16]$$

a) Show that the following matrix is diagonalizable. Also find P that diagonalizer A.

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

- b) i) If $u = \log(x^2 + y^2)$, then show that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$.
 - ii) Find the value of $(1+i\sqrt{3})^5 + (1-i\sqrt{3})^5$.
- c) Solve the differential equation $\frac{dy}{dx} = \frac{x+y-3}{2(x+y)}$.
- d) Let $x_1 = \sqrt{3}$, $x_n = \sqrt{3}x_{n-1}$, $n \ge 2$. Show that $\{x_n\}$ is monotonically increasing and bounded above. Also find $\lim_{n \to \infty} \{x_n\}$.

SECTION-II

Q4) Attempt each of the following.

$$[4\times2=8]$$

- a) Define normal distribution also state its mean and variance.
- b) Explain the term sample with illustration.
- c) Explain the concept of multiple correlation.
- d) Compute Q_1 and Q_3 for given data 10, 15, 13, 16, 19, 7, 2, 9.

Q5) Attempt any four of the following.

$$[4 \times 4 = 16]$$

- a) If three digit number is formed out of 4,6,7,8,5 without repeating any digit, find probability that it is divisible by 5.
- b) Compute coefficient of variation for given data, 7,5,3,6,9.
- c) Write a short note on poisson distribution.

d) IF
$$P(A) = \frac{1}{2} P(B) = \frac{2}{5}$$
, $P(A \cap B) = \frac{1}{3}$. Find

- i) $P(A \cup B)$
- ii) P (A'∩B')
- e) Calculate coefficient of correlation by using given data: $n=20, \Sigma x=80, \Sigma y=40, \Sigma xy=480, \Sigma R^2=1680, \Sigma y^2=320.$
- f) Define:
 - i) Statistic.
 - ii) Null hypothesis.
 - iii) Standard error.
 - iv) Critical region.

Q6) Attempt any two.

 $[2 \times 8 = 16]$

- a) Explain the test procedure for testing equality of two population means for paired and unpaired data.
- b) Compute mean, median and mode for the following frequency distribution.

Class 0-10 10-20 20-30 30-40 40-50 Frequency 5 15 25 18 17

- c) What do you mean by analysis of variance technique.
- d) Describe tests based on χ^2 distribution.

