Total	No.	of	Question	s :	12]	
--------------	-----	----	----------	-----	-----	--

SEAT No.:	
-----------	--

[Total No. of Pages: 3

P811

[4659] - 224

B.E. (Computer Engg.) (Semester - I) DESIGNAND ANALYSIS OF ALGORITHMS

(2008 Pattern)

Time: 3 Hours] [Max. Marks: 100

Instructions to the candidates:

- 1) Answer 3 questions from Section I and 3 questions from Section II.
- 2) Answers to the two sections should be written in separate books.
- 3) Neat diagrams must be drawn wherever necessary.
- 4) Figures to the right indicate full marks.
- 5) Assume suitable data, if necessary.

SECTION - I

Q1) a) Solve the recurrence relation

$$T(n) = T(n-1) + T(n-3) - T(n-4), n > = 4 \text{ subject to } T(n) = n \text{ for } 0 < = n < = 3.$$
 [8]

- b) Write an algorithm for insertion sort. State its time complexity. [6]
- c) Explain with example the notations Big O and Omega. [4]

OR

- **Q2)** a) Write Prim's algorithm for minimum spanning tree. Analyze the algorithm for time complexity [8]
 - b) Explain Divide and conquer strategy with example of Binary search. [6]
 - c) Show that the following equality is correct $5n^2 6n = \theta$ (n²) [4]
- **Q3)** a) Let n = 4 and (a1, a2, a3, a4) = (do, if, int, while), let <math>p(1:4) = (3, 3, 1, 1) and q(0:4) = (2, 3, 1, 1), construct OBST using dynamic programming. [8]
 - b) What is dynamic programming? Define principle of optimality and explain it for 0/1 Knapsack. [8]

P.T.O.

- Q4) a) State multistage graphs problem and explain how it can be solved using backward approach.[8]
 - b) Find optimal solution for 0/1 Knapsack problem using Dynamic programming

$$n = 3$$
, $(W_1, W_2, W_3) = (1,2,3) (P_1, P_2, P_3) = (1,2,4)$ and $m = 6$. [8]

- **Q5)** a) Write an algorithm to solve 8-Queens problem using back tracking. [8]
 - b) Explain the steps of solving Travelling salesMan problem using Branch and Bound. [8]

OR

- **Q6)** a) Explain Graph coloring problem with respect to backtracking. [8]
 - b) What is Branch and Bound method? Explain FIFO Branch and Bound algorithm. [8]

SECTION - II

- Q7) a) Write Cook's algorithm in pseudo C and find out its time complexity.State the significance of this algorithm. [8]
 - b) Consider scheduling problem where six jobs have a profit of (10, 34, 67, 45, 23, 99) and corresponding deadlines (2, 3, 1, 4, 5, 3). Obtain optimum schedule. What is time complexity of your algorithm? [8]

OR

Q8) a) Reduce the following circuit satisfiability to formula satisfiability. [6]

b) Define a Clique problem. Find out all possible Cliques for following graph. Does it contains a Clique of maximum size? [6]

- c) Explain in brief AND / OR Graph decision problem [4]
- **Q9)** a) Explain pointer doubling algorithm with suitable example. [8]
 - b) How Quick sort can be implemented on multiprocessor system? Explain it with suitable Example. [8]

OR

- Q10)a) State and explain different parallel computational models. [8]
 - b) Write an algorithm for odd-even merge sort & Illustrate it with following set of numbers. 2, 4, 3, 5, 6, 1, 7, 8. [8]
- **Q11)**a) Write an algorithm to implement Hoffman coding algorithm. [6]
 - b) What do you mean by Heuristic search algorithm?Explain it in brief with suitable example. [8]
 - c) State and explain Resource allocation algorithm [4]

OR

- Q12)a) State and explain Image edge detection algorithm. [8]
 - b) What is meaning of deadlock detection and deadlock avoidance? what are the necessary conditions for deadlock to occur? [6]
 - c) Explain convex Hulls problem. [4]

