Total No. of Questions—8]

[Total No. of Printed Pages—3

Seat	
No.	

[5559]-204

S.E. (I.T.) (First Semester) EXAMINATION, 2019 FUNDAMENTALS OF DATA STRUCTURES (2015 PATTERN)

Time: 2 Hours

Maximum Marks: 50

- N.B. :— (i) Answer Q. 1 or Q. 2, Q. 3 or Q. 4, Q. 5 or Q. 6 and Q. 7 or Q. 8.
 - (ii) Neat diagrams must be drawn wherever necessary.
 - (iii) Figures to the right side indicate full marks.
 - (iv) Assume suitable data if necessary.
- 1. (a) Explain the need of parameter passing in functions. Demonstrate different types of parameter passing in C with example for each.
 - (b) Explain how strings are represented in C. Write a psudo code for checking whether given string is a palindrome or not.

Or

- 2. (a) Write a psudo code to store heights of N students dynamically and find average height. [Use Malloc()] [6]
 - (b) Explain difference between structure and union. Demonstrate each with example. [6]

P.T.O.

3.	(a)	Discuss in detail the different asymptotic notations used to represent time complexity of an algorithm. [6]
	(<i>b</i>)	With example, discuss the criteria for choosing a sorting algorithm based on the input size and time complexity.
		[Trade-off bubble, insertion and quicksort] [6]
		Or
4.	(a)	For the following set of numbers, perform stepwise demonstration of merge-short algorithm :
		91 23 48 13 97 63 27 36 57 [6]
	(<i>b</i>)	Demonstrate how to access elements of an array using pointer notation. Write psudo code to find max-element in an array
		of size, using pointer notation. [6]
5 .	(a)	Describe significance of sparse matrix. With example demonstrate
		the steps of sparse matrix addition. [8]
	(<i>b</i>)	Explain representation of polynomial node using array and using structure. [6]
		Or
6.	(a)	Explain the following Linear Data structures: [8]
		(i) Stack
		(ii) Queue.
	(<i>b</i>)	Represent the following polynomials using array: [6]
		(i) $3x^{14} + 2x^{-8} + 1$

[5559]-204

(ii) $15x^3y^2$ | - $10x^2$ + 7y - 10.

7.	(a)	What is ADT? Explain singly linked list as ADT.	[6]
	(<i>b</i>)	Explain with example:	[6]

- (i) Doubly linked list
- (ii) Circular linked list.

Or

- 8. (a) Write C function for inserting and deleting a node of SLL. [6]
 - (b) Represent the following list using GLL: [6] (a, (b, c), (d, (c, f, g)), h).

[5559]-204