[7]

Total No. of Questions—8]

[Total No. of Printed Pages—2

Seat	
No.	

[5559]-203

S.E. (IT) (First Semester) EXAMINATION, 2019 DIGITAL ELECTRONICS AND LOGIC DESIGN

(2015 PATTERN)								
Tir	ne :	Two Hours Maximum Marks	: 50					
N.B	2)	Answer questions 1 or 2, 3 or 4, 5 or 6, and 7 or 8. Neat diagrams must be drawn wherever necessary. Assume suitable data, if necessary						
1.	(a)	Convert given numbers in binary form and use 2's complement method to perform following operations i) (-48) - (+23) ii) - (48) - (-23)	[6]					
	(b)	Design and implement 8:1MUX using two 4:1 mux and implement given function. $F(X, Y, Z) = \sum m(1,3,4,7)$	[6]					
2	(a)	Explain with diagram CMOS to TTL interface	[6]					
2.	(b)	Use K-map minimization technique to realize following expression using minimum number of gates. $Y \doteq = \Sigma m (1, 2, 9, 10, 11, 14, 15)$	[6]					
3	(a)	Design MOD 93 counter using IC 7490.	[6]					
-	(b)	Draw and explain SISO and PIPO type of shift register. Give application of each.	·[6]					
	OR							
4	(a)	Draw JK Flip flop using gates and explain Race around condition with the help of timing diagram.	[6]					
	(b)	A sequential digital system has input pin P and output Q. Output Q becomes 1 only when three consecutive '1's are received on pin P. Design the circuit using D flip flops and Moore modeling style.	[6]					
5	(a)	Draw and explain general structure of PLA.	[6]					

=1, counting enables and for E =0 counting disables and starts from initial state.

http://www.sppuonline.com

Draw the ASM chart for 2 bit binary counter having enable input E such that if E

	(b)	A sequential digital system has input pin P and output Q. Output Q becomes \(\frac{1}{V_0} \) onlys when three consecutive '1's are received on pin P. Design the circuit using D flip flops and Moore modeling style.	ppu lou line.com	n
5	(a)	Draw and explain general structure of PLA.	[6]	
	(b)	Draw the ASM chart for 2 bit binary counter having enable input E such that if E =1, counting enables and for E =0 counting disables and starts from initial state.	[7]	
		OR .		
6	(a)	Implement following function using suitable PAL. $F(A,B,C,D) = \sum m(0,1,3,15)$	[7]	
	(b)	Compare PROM, PLA and PLA devices.	[6]	
7	(a)	Write VHDL code (Entity and Architecture) for 4:1Multiplexer using Dataflow modeling style.	[6]	
	(b)	Explain structure of VHDL code and explain its various components.	[7]	
		OR		
8	(a)	Compare Behavioural, Dataflow and Structural modeling styles in VHDL programming.	[6]	
	(b)	Write VHDL code for Half adder using Behavioural modeling style.	[7]	