Total No. of Questions : 8]

P5118

SEAT No. :

[Total No. of Pages : 2]

[5560]-552

T.E. (E & TC) (Semester - VI) DIGITAL SIGNAL PROCESSING (2015 Pattern)

Time: 2½ Hours] [Max. Marks: 70

Instructions to the candidates:

- 1) Neat diagrams must be drawn wherever necessary.
- 2) Figures to the right indicate full marks.
- 3) Assume suitable data, if necessary.
- **Q1)** a) Discuss the merits, demerits and application of digital signal processing. [6]
 - b) Find the output y(n) of a filter whose impulse response is $h(n) = \{1,1,1\}$ and input signal $x(n) = \{3, -1, 0, 1, 3, 2, 0, 1, 2, 1\}$ using Overlap add method. [7]
 - c) State and prove the Differentiation and scaling properties of z-transform. [7]

OR

- **Q2)** a) If $x(t) = \sin(70\pi) + \cos(55\pi)$ is sampled by fs = 200Hz frequency. Then find out Nyquist rate, Nyquist interval and Nyquist frequency. [6]
 - b) If $x(n) = \{1,2,1,2\}$ and $h(n) = \{1,-1,2,1\}$, compute the circular convolution using DFT-IDFT method. [7]
 - c) Compute the z-transform and ROC of the following sequence: [7]

$$x() = \left(\frac{1}{2}\right)^n u(-n-1).$$

Q3) a) For a given specifications of the desired low pass filter given below.

$$0.707 \le |H(\omega)| \le 1.0,$$
 $0 \le \omega \le 0.2\pi$
 $|H(\omega)| \le 0.08,$ $0.4\pi \le \omega \le \pi$

design a Butterworth filter using bilinear transfomation.

P.T.O.

[8]

b) Draw cascade and parallel realization for the system given by [9]

$$H()z=\frac{1-z^{-1}}{1-0.2z^{-1}-0.15z^{-2}}$$

OR

- Q4) a) Design a digital low pass Butterworth IIR filter using bilinear transformation for following specifications: [8]
 f_c = 1kHz, f_s = 3kHz, F_s = 8kHz, R_p = 2dB, and A_s = 15dB
 - b) Apply Bilinear Transformation to $H() = \frac{2}{(s+2)(s+3)}$ with T = 0.1 sec. [9]
- **Q5)** a) Explain Gibbs Phenomenon observed in FIR filter design. What are the desired features of window functions to improve frequency response? [8]
 - b) Realize a linear phase FIR filter structure having following impulse response: $h() \neq \delta(n) + \frac{1}{2}\delta(n-1) \frac{1}{4}\delta(n-2) + \frac{1}{2}\delta(n-3) + \delta(n-4)$ [9]

OR

- **Q6)** a) What is the use of windowing? Explain the features of Kaiser Window. [8]
 - b) Design a linear phase FIR band filter using hamming window with cut off frequencies 0.2 rad/sec & 0.3 rad/sec, M=7. [9]
- **Q7)** a) Discuss the interference cancellation in ECG using DSP. [8]
 - b) Explain two band digital crossover in detail. [8]

OR

- **Q8)** a) Draw a block diagram of Digital crossover audio systems. Explain in brief. [8]
 - b) Explain Compact disc recording system in detail. [8]

