Total	No.	of Questions : 8] SEAT No. :
P20	09	[Total No. of Pages : 2
		[4859]-1070
		B. E. (Computer Engineering)
DESIGN AND ANALYSIS OF ALGORITHMS (2012 Pattern)		
		ons to the candidates:
Histi	исно 1)	Attempt Q1 OR Q.2, Q.3, OR Q.4, Q.5 OR Q.6, Q.7 OR Q.8
	<i>2)</i>	Figures to the right indicate full marks.
	<i>3)</i>	Draw neat diagram wherever necessary.
	4)	Make suitable assumptions wherever necessary.
Q1)	a)	Write control abstraction for Divide and Conquer Strategy and comment on its generalized recurrence equation. [6]
	b)	Find an optimal solution for following $0/1$ Knapsack problem using dynamic programming: Number of Objects $n = 4$, Knapsack Capacity $M = 5$, Weights (W1, W2, W3, W4) = $(2, 3, 4, 5)$ and profits (P1, P2, P3, P4) = $(3, 4, 5, 6)$.
	c)	Write a short note on graph coloring problem. Write algorithm for the same. [8]
		OR
Q2)	a)	Calculate the worst case time complexity of $f(n) = 6n(n^3 - n) + 9n$ using running time complexity. [6]
	b)	Write an algorithm for optimum binary search tree. [6]
	c)	Explain in detail with one example Travelling Salesperson Problem using branch and bound method. [8] OR
<i>Q3</i>)	a)	Write non deterministic algorithm for Clique decision problem. [8]
2 /	b)	
Q4)	a)	Write a short note on Randomized algorithm. [8]
	b)	Write non deterministic algorithm for sorting elements in non-decreasing

P.T.O.

[8]

order.

- a) Explain how graph problems can be solved using parallel algorithm. [8] Q5)
 - b) Write Kruskal's algorithm using parallel computing to find minimum spanning tree. Explain with a suitable example. [8]

OR

- **Q6**) Write an algorithm for finding Parallel shortest paths. Also comment on the time complexity of this algorithm. [8]
 - b) Write an odd-even merge sort algorithm. Explain with a suitable example. [8]
- [9] Give and explain Dijkstra-Scholten algorithm. Q7)
 - b) What is Embedded system? Explain Embedded system Scheduling. [9]

OR

- Define Internet of things (IoT). Explain elements of IoT. [9] Q8)
 - b) Give and explain Algorithms in Software Engineering with example. [9]

www.sppuonline.com

