
Total No. of Questions—8]	[Total No. of Printed Pages—4
Seat No.	[5559]-181
S.E. (Computer) (I Sem.) I DISCRETE MATH (2015 PATT)	HEMATICS
Time: Two Hours	Maximum Marks : 50
N.B.:— (i) Neat diagrams must be (ii) Figures to the right in (iii) Your answers will be (iv) Assume suitable data,	valued as a whole.
Q.1(a) Show that	
$7^{2n} + (2^{3n-3})(3^{n-1})$ is divisible by 25 for	all natural number n. [3]
(b) Among the integer 1 to 1000. How many of them as How many are not divisible by 5 and 7 but divisible by	
(c) Let A={1,2,3,4,6,9,12} let aRb if a divided b. Show Prove or disprove if it is a lattice	w that R is POSET, Draw Hasse diagram. [6]
OR	
Q.2 (a) What is multiset. Let P and Q are two multiset {a,a,a,c,d,d} and Q= {a,a,b,c,c}. Obtain Union, Interse of two multisets P and Q.	
of two manages i and Q.	آءا
(b) Prove that the set of rational numbers is countably	y infinite. [3]
(c) Relation on {1,2,3,4,5}. If relation is defined as {(1,1),(2,2),(3,3),(4,4),(5,5),(1,5),(5,1),(3,5),(5,3),(1,3)	(3,1)}.
Find the equivalence classes	[3]
d) Show that the set of all divisors of 70 for divisibility	relation forms a lattice [3]
Q.3(a) 2 mathematics papers & 5 other papers are to be no of ways if, i) Mathematics papers are consecutive.	e arranged at an examination find the total [3]
(b) In the expansion of $(1+x)^6$, what is the coefficient	of x^3 [3]
	P.T.O.

(c) Use dijkstra's algorithm to find the shortest path between a and z

[6]

Or

Q.4 (a) If the letters of the word 'REGULATIONS' be arranged at random.

What is the chance that there will be exactly 4 letters between R and E?

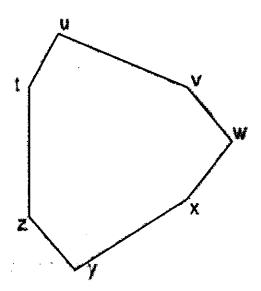
[3]

[3]

(b) Use Biomial theorm to expand $(x^4 + 2)^3$

[3]

c) Under what condition Kmn will have eulerian circuit?


d) The graphs G and H with vertex sets V(G) and V(H), are drawn below.

Determine whether or not G and H drawn below are isomorphic. If they are

isomorphic, give a function g: V(G)->V(H) that defines the isomorphism. If they are not explain why they are not.

G: C d

H;

Q.5(a) Suppose data items A,B,C,D,E,F,G occur in the following frequencies.

Data Items	A	В	С	D	E	F	G
Weight	10	30	5	15	20	15	05

Construct a Huffman code for the data.

What is the minimum weighted path length.

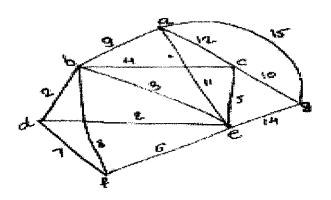
[6]

(b) Using the labelling procedure to find maximum flow in the transport network in the following figure. Determine the corresponding minimum cut. [7]

Weight 10 30 5 15 20 15 05

Construct a Huffman code for the data.

http://www.sppuonline.com


What is the minimum weighted path length.

[6]

(b) Using the labelling procedure to find maximum flow in the transport network in the following figure. Determine the corresponding minimum cut. [7]

Or
Q.6 (a) Give the stepwise construction of minimum spanning tree using Prims algorithm for the following graph. Obtain the total cost of minimum spanning tree.

- (b) Define with example.
- i) Level and height of a tree.
- ii) Binary search tree.
- iii) Spanning tree

[6]

[7]

Q.7 a) What is Monoid. Show that the algebraic structure (A,+) is a monoid, where A is set of integers and + is a binary operation giving addition of two integers. [3]

b) Define the following terms

[3]

i.Ring

ii.Field

iii.Integral domian

http://www.spperoshing.com $R = \{a + b\sqrt{2}; b \in I\}$ for the operation +,* is integral domain but not a field.

Q.7 a) What is Monoid. Show that the algebraic structure $(A,+)$ is a monoid, where A integers and $+$ is a binary operation giving addition of two integers.	is set of
b) Define the following terms	[3]
i.Ring	
ii.Field	
iii.Integral domian	
c) Show that $R = \{a + b\sqrt{2}; b \in I\}$ for the operation +,* is integral domain but not a field	l. [7]
Or	
Q.8 a) Let A = {0,1}. Is A closed under 1) Multiplication 2) Addition	
2) Addition	[4]
b) Define	[4]
 Properties of Binary operations Ring with unity 	
c) Let $R = \{0,60,120,180,240,300\}$ and * == binary operation so that for a a	nd b in
R a * b is overall angular rotation corresponding to successive rotations by a and by	b show
(R,*) is a group.	[5]